Skip to main content

Neurocutaneous Syndromes

  • Chapter
  • First Online:
Oncology of CNS Tumors
  • 1271 Accesses

Abstract

Neurocutaneous disorders are a heterogeneous group of genetic disorders characterized by abnormalities of the skin and nervous systems due to their common embryological origin. These disorders have inconsistent definitions, and therefore there is lack of consensus regarding which diseases belong to this category. In general, and for the purposes of this chapter, the neurofibromatoses, Sturge-Weber syndrome, von Hippel-Lindau syndrome, and Gorlin syndrome are accepted neurocutaneous disorders and will be discussed. Genetic aberrations in cell growth pathways are fundamental to all neurocutaneous syndromes which predispose these patients to developmental abnormalities and neoplasms of the central and peripheral nervous systems, skull, skin, and eyes. Therefore, these heterogeneous disorders are also known as tumor predisposition syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Campian J, Gutmann DH (2017) CNS Tumors in Neurofibromatosis. J Clin Oncol 35:2378–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Karnes PS (1998) Neurofibromatosis: a common neurocutaneous disorder. Mayo Clin Proc 73:1071–1076

    Article  CAS  PubMed  Google Scholar 

  3. Huson SM, Compston DA, Clark P, Harper PS (1989) A genetic study of von Recklinghausen neurofibromatosis in south East Wales. I. Prevalence, fitness, mutation rate, and effect of parental transmission on severity. J Med Genet 26:704–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lammert M, Friedman JM, Kluwe L, Mautner VF (2005) Prevalence of neurofibromatosis 1 in German children at elementary school enrollment. Arch Dermatol 141:71–74

    Article  PubMed  Google Scholar 

  5. Jett K, Friedman JM (2010) Clinical and genetic aspects of neurofibromatosis 1. Genet Med 12:1–11

    Article  PubMed  Google Scholar 

  6. Dilworth JT et al (2006) Molecular targets for emerging anti-tumor therapies for neurofibromatosis type 1. Biochem Pharmacol 72:1485–1492

    Article  CAS  PubMed  Google Scholar 

  7. Khalaf WF et al (2007) K-ras is critical for modulating multiple c-kit-mediated cellular functions in wild-type and Nf1+/− mast cells. J Immunol 1950(178):2527–2534

    Article  Google Scholar 

  8. Hand JL (2015) What’s new with common genetic skin disorders? Curr Opin Pediatr 27:460–465

    Article  CAS  PubMed  Google Scholar 

  9. McClatchey AI (2007) Neurofibromatosis. Annu Rev Pathol 2:191–216

    Article  CAS  PubMed  Google Scholar 

  10. Kliegman R, Nelson WE (2011) Nelson textbook of pediatrics. Elsevier/Saunders, Philadelphia, PA

    Google Scholar 

  11. Gutmann DH et al (2017) Neurofibromatosis type 1. Nat Rev Dis Primer 3:17004

    Article  Google Scholar 

  12. Heervä E et al (2012) A controlled register-based study of 460 neurofibromatosis 1 patients: increased fracture risk in children and adults over 41 years of age. J Bone Miner Res 27:2333–2337

    Article  PubMed  Google Scholar 

  13. Lin V, Daniel S, Forte V (2004) Is a plexiform neurofibroma pathognomonic of neurofibromatosis type I? Laryngoscope 114:1410–1414

    Article  PubMed  Google Scholar 

  14. Friedman JM, Birch PH (1997) Type 1 neurofibromatosis: a descriptive analysis of the disorder in 1,728 patients. Am J Med Genet 70:138–143

    Article  CAS  PubMed  Google Scholar 

  15. Huson SM, Harper PS, Compston DA (1988) Von Recklinghausen neurofibromatosis. A clinical and population study in south-East Wales. Brain J Neurol 111(Pt 6):1355–1381

    Article  Google Scholar 

  16. Waggoner DJ, Towbin J, Gottesman G, Gutmann DH (2000) Clinic-based study of plexiform neurofibromas in neurofibromatosis 1. Am J Med Genet 92:132–135

    Article  CAS  PubMed  Google Scholar 

  17. Ferner RE (2007) Neurofibromatosis 1 and neurofibromatosis 2: a twenty first century perspective. Lancet Neurol 6:340–351

    Article  PubMed  Google Scholar 

  18. Serletis D et al (2007) Massive plexiform neurofibromas in childhood: natural history and management issues. J Neurosurg 106:363–367

    PubMed  Google Scholar 

  19. Coffin CM, Davis JL, Borinstein SC (2014) Syndrome-associated soft tissue tumours. Histopathology 64:68–87

    Article  PubMed  Google Scholar 

  20. Hagel C et al (2007) Histopathology and clinical outcome of NF1-associated vs. sporadic malignant peripheral nerve sheath tumors. J Neuro-Oncol 82:187–192

    Article  CAS  Google Scholar 

  21. Rauen KA et al (2015) Recent developments in neurofibromatoses and RASopathies: management, diagnosis and current and future therapeutic avenues. Am J Med Genet A 167:1–10

    Article  CAS  Google Scholar 

  22. Friedrich RE, Hartmann M, Mautner VF (2007) Malignant peripheral nerve sheath tumors (MPNST) in NF1-affected children. Anticancer Res 27:1957–1960

    CAS  PubMed  Google Scholar 

  23. de Blank PMK et al (2017) Optic pathway gliomas in neurofibromatosis type 1: an update: surveillance, treatment indications, and biomarkers of vision. J Neuroophthalmol 37(Suppl 1):S23–S32

    Article  PubMed  PubMed Central  Google Scholar 

  24. Czyzyk E, Jóźwiak S, Roszkowski M, Schwartz RA (2003) Optic pathway gliomas in children with and without neurofibromatosis 1. J Child Neurol 18:471–478

    Article  PubMed  Google Scholar 

  25. Shamji MF, Benoit BG (2007) Syndromic and sporadic pediatric optic pathway gliomas: review of clinical and histopathological differences and treatment implications. Neurosurg Focus 23:E3

    Article  PubMed  Google Scholar 

  26. Liu GT et al (2004) Optic radiation involvement in optic pathway gliomas in neurofibromatosis. Am J Ophthalmol 137:407–414

    Article  PubMed  Google Scholar 

  27. Listernick R, Charrow J, Greenwald M, Mets M (1994) Natural history of optic pathway tumors in children with neurofibromatosis type 1: a longitudinal study. J Pediatr 125:63–66

    Article  CAS  PubMed  Google Scholar 

  28. Rosser T, Packer RJ (2002) Intracranial neoplasms in children with neurofibromatosis 1. J Child Neurol 17:630–637-651

    Article  PubMed  Google Scholar 

  29. Rodriguez FJ et al (2008) Gliomas in neurofibromatosis type 1: a clinicopathologic study of 100 patients. J Neuropathol Exp Neurol 67:240–249

    Article  PubMed  Google Scholar 

  30. Ferner RE et al (2007) Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet 44:81–88

    Article  CAS  PubMed  Google Scholar 

  31. Burgio F et al (2017) Numerical activities of daily living in adults with neurofibromatosis type 1. J Intellect Disabil Res 61(11):1069–1077. https://doi.org/10.1111/jir.12408

    Article  CAS  PubMed  Google Scholar 

  32. Cipolletta S, Spina G, Spoto A (2018) Psychosocial functioning, self-image, and quality of life in children and adolescents with neurofibromatosis type 1. Child Care Health Dev 44(2):260–268. https://doi.org/10.1111/cch.12496

    Article  CAS  PubMed  Google Scholar 

  33. Pecoraro A et al (2017) Epilepsy in neurofibromatosis type 1. Epilepsy Behav 73:137–141

    Article  PubMed  Google Scholar 

  34. Vogel AC, Gutmann DH, Morris SM (2017) Neurodevelopmental disorders in children with neurofibromatosis type 1. Dev Med Child Neurol 59(11):1112–1116. https://doi.org/10.1111/dmcn.13526

    Article  PubMed  Google Scholar 

  35. Feldmann R, Denecke J, Grenzebach M, Schuierer G, Weglage J (2003) Neurofibromatosis type 1: motor and cognitive function and T2-weighted MRI hyperintensities. Neurology 61:1725–1728

    Article  CAS  PubMed  Google Scholar 

  36. DeBella K, Szudek J, Friedman JM (2000) Use of the national institutes of health criteria for diagnosis of neurofibromatosis 1 in children. Pediatrics 105:608–614

    Article  CAS  PubMed  Google Scholar 

  37. Heim RA, Silverman LM, Farber RA, Kam-Morgan LN, Luce MC (1994) Screening for truncated NF1 proteins. Nat Genet 8:218–219

    Article  CAS  PubMed  Google Scholar 

  38. Messiaen LM et al (2000) Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 15:541–555

    Article  CAS  PubMed  Google Scholar 

  39. Lopes Ferraz Filho JR et al (2008) Unidentified bright objects on brain MRI in children as a diagnostic criterion for neurofibromatosis type 1. Pediatr Radiol 38:305–310

    Article  PubMed  Google Scholar 

  40. Shen MH, Harper PS, Upadhyaya M (1996) Molecular genetics of neurofibromatosis type 1 (NF1). J Med Genet 33:2–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mautner VF et al (2003) Malignant peripheral nerve sheath tumours in neurofibromatosis type 1: MRI supports the diagnosis of malignant plexiform neurofibroma. Neuroradiology 45:618–625

    Article  CAS  PubMed  Google Scholar 

  42. Mautner V-F et al (2008) Assessment of benign tumor burden by whole-body MRI in patients with neurofibromatosis 1. NeuroOncol 10:593–598

    Google Scholar 

  43. Bredella MA et al (2007) Value of PET in the assessment of patients with neurofibromatosis type 1. AJR Am J Roentgenol 189:928–935

    Article  PubMed  Google Scholar 

  44. Ferner RE et al (2008) [18F]2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Ann Oncol 19:390–394

    Article  CAS  PubMed  Google Scholar 

  45. Ferner RE et al (2000) Evaluation of (18)fluorodeoxyglucose positron emission tomography ((18)FDG PET) in the detection of malignant peripheral nerve sheath tumours arising from within plexiform neurofibromas in neurofibromatosis 1. J Neurol Neurosurg Psychiatry 68:353–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. King A, Listernick R, Charrow J, Piersall L, Gutmann DH (2003) Optic pathway gliomas in neurofibromatosis type 1: the effect of presenting symptoms on outcome. Am J Med Genet A 122A:95–99

    Article  PubMed  Google Scholar 

  47. Gachiani J, Kim D, Nelson A, Kline D (2007) Surgical management of malignant peripheral nerve sheath tumors. Neurosurg Focus 22:E13

    PubMed  Google Scholar 

  48. Perrin RG, Guha A (2004) Malignant peripheral nerve sheath tumors. Neurosurg Clin N Am 15:203–216

    Article  PubMed  Google Scholar 

  49. Stucky C-CH et al (2012) Malignant peripheral nerve sheath tumors (MPNST): the Mayo Clinic experience. Ann Surg Oncol 19:878–885

    Article  PubMed  Google Scholar 

  50. Piccirilli M et al (2006) Spontaneous regression of optic pathways gliomas in three patients with neurofibromatosis type I and critical review of the literature. Childs Nerv Syst 22:1332–1337

    Article  PubMed  Google Scholar 

  51. Pruzan NL, de Alba Campomanes A, Gorovoy IR, Hoyt C (2015) Spontaneous regression of a massive sporadic Chiasmal optic pathway glioma. J Child Neurol 30:1196–1198

    Article  PubMed  Google Scholar 

  52. Parsa CF et al (2001) Spontaneous regression of optic gliomas: thirteen cases documented by serial neuroimaging. Arch Ophthalmol 1960(119):516–529

    Article  Google Scholar 

  53. Perilongo G et al (1999) Spontaneous partial regression of low-grade glioma in children with neurofibromatosis-1: a real possibility. J Child Neurol 14:352–356

    Article  CAS  PubMed  Google Scholar 

  54. El-Shehaby AMN, Reda WA, Abdel Karim KM, Emad Eldin RM, Nabeel AM (2016) Single-session gamma knife radiosurgery for optic pathway/hypothalamic gliomas. Spec Suppl 125:50–57

    Google Scholar 

  55. Guillamo J-S et al (2003) Prognostic factors of CNS tumours in Neurofibromatosis 1 (NF1): a retrospective study of 104 patients. Brain J Neurol 126:152–160

    Article  Google Scholar 

  56. Sharif S et al (2006) Second primary tumors in neurofibromatosis 1 patients treated for optic glioma: substantial risks after radiotherapy. J Clin Oncol 24:2570–2575

    Article  PubMed  Google Scholar 

  57. Gerszten PC, Burton SA, Ozhasoglu C, McCue KJ, Quinn AE (2008) Radiosurgery for benign intradural spinal tumors. Neurosurgery 62:887–895-896

    Article  PubMed  Google Scholar 

  58. Chamberlain MC, Grafe MR (1995) Recurrent chiasmatic-hypothalamic glioma treated with oral etoposide. J Clin Oncol 13:2072–2076

    Article  CAS  PubMed  Google Scholar 

  59. Friedman HS et al (1992) Treatment of children with progressive or recurrent brain tumors with carboplatin or iproplatin: a Pediatric oncology group randomized phase II study. J Clin Oncol 10:249–256

    Article  CAS  PubMed  Google Scholar 

  60. Gajjar A et al (1993) Response of pediatric low grade gliomas to chemotherapy. Pediatr Neurosurg 19:113–118-120

    Article  CAS  PubMed  Google Scholar 

  61. Laithier V et al (2003) Progression-free survival in children with optic pathway tumors: dependence on age and the quality of the response to chemotherapy--results of the first French prospective study for the French Society of Pediatric Oncology. J Clin Oncol 21:4572–4578

    Article  CAS  PubMed  Google Scholar 

  62. Mahoney DH et al (2000) Carboplatin is effective therapy for young children with progressive optic pathway tumors: a Pediatric oncology group phase II study. NeuroOncol 2:213–220

    Google Scholar 

  63. Massimino M et al (2002) High response rate to cisplatin/etoposide regimen in childhood low-grade glioma. J Clin Oncol 20:4209–4216

    Article  CAS  PubMed  Google Scholar 

  64. Packer RJ et al (1988) Treatment of chiasmatic/hypothalamic gliomas of childhood with chemotherapy: an update. Ann Neurol 23:79–85

    Article  CAS  PubMed  Google Scholar 

  65. Pons MA et al (1992) Chemotherapy with vincristine (VCR) and etoposide (VP-16) in children with low-grade astrocytoma. J Neuro-Oncol 14:151–158

    Article  CAS  Google Scholar 

  66. Rosenstock JG et al (1985) Chiasmatic optic glioma treated with chemotherapy. A preliminary report. J Neurosurg 63:862–866

    Article  CAS  PubMed  Google Scholar 

  67. Gutmann DH et al (2003) Molecular analysis of astrocytomas presenting after age 10 in individuals with NF1. Neurology 61:1397–1400

    Article  CAS  PubMed  Google Scholar 

  68. Bader JL (1986) Neurofibromatosis and cancer. Ann N Y Acad Sci 486:57–65

    Article  CAS  PubMed  Google Scholar 

  69. Rasmussen SA, Yang Q, Friedman JM (2001) Mortality in neurofibromatosis 1: an analysis using U.S. death certificates. Am J Hum Genet 68:1110–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Khatua S, Gutmann DH, Packer RJ (2018) Neurofibromatosis type 1 and optic pathway glioma: molecular interplay and therapeutic insights. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.26838

  71. Banerjee A et al (2017) A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. NeuroOncol 19:1135–1144

    CAS  Google Scholar 

  72. Wei J et al (2014) Nilotinib is more potent than imatinib for treating plexiform neurofibroma in vitro and in vivo. PLoS One 9:e107760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Khelifa I, Saurat JH, Prins C (2015) Use of imatinib in a patient with cutaneous vasculopathy in the context of von Recklinghausen disease/neurofibromatosis. Br J Dermatol 172:253–256

    Article  CAS  PubMed  Google Scholar 

  74. Evans DG et al (2009) Consensus recommendations to accelerate clinical trials for neurofibromatosis type 2. Clin Cancer Res 15:5032–5039

    Article  PubMed  PubMed Central  Google Scholar 

  75. Pećina-Šlaus N (2013) Merlin, the NF2 gene product. Pathol Oncol Res POR 19:365–373

    Article  CAS  PubMed  Google Scholar 

  76. Ammoun S, Hanemann CO (2011) Emerging therapeutic targets in schwannomas and other merlin-deficient tumors. Nat Rev Neurol 7:392–399

    Article  CAS  PubMed  Google Scholar 

  77. Scoles DR (2008) The merlin interacting proteins reveal multiple targets for NF2 therapy. Biochim Biophys Acta 1785:32–54

    CAS  PubMed  Google Scholar 

  78. Uesaka T et al (2007) Expression of VEGF and its receptor genes in intracranial schwannomas. J Neuro-Oncol 83:259–266

    Article  CAS  Google Scholar 

  79. Baser ME et al (2004) Genotype-phenotype correlations for nervous system tumors in neurofibromatosis 2: a population-based study. Am J Hum Genet 75:231–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cranial meningiomas in 411 neurofibromatosis type 2 (NF2) patients with proven gene mutations: clear positional effect of mutations, but absence of female severity effect on age at onset. J Med Genet. http://jmg.bmj.com.myaccess.library.utoronto.ca/content/48/4/261.long. Accessed 25 Oct 2017

  81. Evans DGR (2009) Neurofibromatosis type 2 (NF2): a clinical and molecular review. Orphanet J Rare Dis 4:16

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gutmann DH et al (1997) The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA 278:51–57

    Article  CAS  PubMed  Google Scholar 

  83. Evans DGR et al (2008) What are the implications in individuals with unilateral vestibular schwannoma and other neurogenic tumors? J Neurosurg 108:92–96

    Article  PubMed  Google Scholar 

  84. Fisher LM, Doherty JK, Lev MH, Slattery WH (2007) Distribution of nonvestibular cranial nerve schwannomas in neurofibromatosis 2. Otol Neurotol 28:1083–1090

    Article  PubMed  Google Scholar 

  85. Evans DGR et al (2007) Mosaicism in neurofibromatosis type 2: an update of risk based on uni/bilaterality of vestibular schwannoma at presentation and sensitive mutation analysis including multiple ligation-dependent probe amplification. J Med Genet 44:424–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moffat DA, Quaranta N, Baguley DM, Hardy DG, Chang P (2003) Management strategies in neurofibromatosis type 2. Eur Arch Otorhinolaryngol 260:12–18

    PubMed  Google Scholar 

  87. Samii M, Gerganov V, Samii A (2008) Microsurgery management of vestibular schwannomas in neurofibromatosis type 2: indications and results. Prog Neurol Surg 21:169–175

    Article  CAS  PubMed  Google Scholar 

  88. Samii M, Matthies C, Tatagiba M (1997) Management of vestibular schwannomas (acoustic neuromas): auditory and facial nerve function after resection of 120 vestibular schwannomas in patients with neurofibromatosis 2. Neurosurgery 40:696–705-706

    Article  CAS  PubMed  Google Scholar 

  89. Slattery WH, Fisher LM, Hitselberger W, Friedman RA, Brackmann DE (2007) Hearing preservation surgery for neurofibromatosis type 2-related vestibular schwannoma in pediatric patients. J Neurosurg 106:255–260

    Article  PubMed  Google Scholar 

  90. Schwartz MS, Otto SR, Brackmann DE, Hitselberger WE, Shannon RV (2003) Use of a multichannel auditory brainstem implant for neurofibromatosis type 2. Stereotact Funct Neurosurg 81:110–114

    Article  PubMed  Google Scholar 

  91. Schwartz MS, Otto SR, Shannon RV, Hitselberger WE, Brackmann DE (2008) Auditory brainstem implants. Neurother J Am Soc Exp Neurother 5:128–136

    Article  Google Scholar 

  92. Neff BA et al (2007) Cochlear implantation in the neurofibromatosis type 2 patient: long-term follow-up. Laryngoscope 117:1069–1072

    Article  PubMed  Google Scholar 

  93. Subach BR et al (1999) Stereotactic radiosurgery in the management of acoustic neuromas associated with neurofibromatosis type 2. J Neurosurg 90:815–822

    Article  CAS  PubMed  Google Scholar 

  94. Rowe J, Radatz M, Kemeny A (2008) Radiosurgery for type II neurofibromatosis. Prog Neurol Surg 21:176–182

    Article  PubMed  Google Scholar 

  95. Mathieu D et al (2007) Stereotactic radiosurgery for vestibular schwannomas in patients with neurofibromatosis type 2: an analysis of tumor control, complications, and hearing preservation rates. Neurosurgery 60:460–468-470

    Article  PubMed  Google Scholar 

  96. Linskey ME, Lunsford LD, Flickinger JC (1992) Tumor control after stereotactic radiosurgery in neurofibromatosis patients with bilateral acoustic tumors. Neurosurgery 31:829-838-839

    Article  Google Scholar 

  97. Vachhani JA, Friedman WA (2007) Radiosurgery in patients with bilateral vestibular schwannomas. Stereotact Funct Neurosurg 85:273–278

    Article  PubMed  Google Scholar 

  98. Gonzalvo A et al (2011) Schwannomatosis, sporadic schwannomatosis, and familial schwannomatosis: a surgical series with long-term follow-up. Clinical article. J Neurosurg 114:756–762

    Article  PubMed  Google Scholar 

  99. Antinheimo J et al (2000) Population-based analysis of sporadic and type 2 neurofibromatosis-associated meningiomas and schwannomas. Neurology 54:71–76

    Article  CAS  PubMed  Google Scholar 

  100. Merker VL, Esparza S, Smith MJ, Stemmer-Rachamimov A, Plotkin SR (2012) Clinical features of schwannomatosis: a retrospective analysis of 87 patients. Oncologist 17:1317–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sestini R, Bacci C, Provenzano A, Genuardi M, Papi L (2008) Evidence of a four-hit mechanism involving SMARCB1 and NF2 in schwannomatosis-associated schwannomas. Hum Mutat 29:227–231

    Article  CAS  PubMed  Google Scholar 

  102. Piotrowski A et al (2014) Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas. Nat Genet 46:182–187

    Article  CAS  PubMed  Google Scholar 

  103. Plotkin SR et al (2012) Quantitative assessment of whole-body tumor burden in adult patients with neurofibromatosis. PLoS One 7:e35711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Carter JM et al (2012) Epithelioid malignant peripheral nerve sheath tumor arising in a schwannoma, in a patient with ‘neuroblastoma-like’ schwannomatosis and a novel germline SMARCB1 mutation. Am J Surg Pathol 36:154–160

    Article  PubMed  PubMed Central  Google Scholar 

  105. Swensen JJ et al (2009) Familial occurrence of schwannomas and malignant rhabdoid tumour associated with a duplication in SMARCB1. J Med Genet 46:68–72

    Article  CAS  PubMed  Google Scholar 

  106. Baser ME, Friedman JM, Evans DGR (2006) Increasing the specificity of diagnostic criteria for schwannomatosis. Neurology 66:730–732

    Article  PubMed  Google Scholar 

  107. MacCollin M et al (2003) Familial schwannomatosis: exclusion of the NF2 locus as the germline event. Neurology 60:1968–1974

    Article  CAS  PubMed  Google Scholar 

  108. Baskin HJ (2008) The pathogenesis and imaging of the tuberous sclerosis complex. Pediatr Radiol 38:936–952

    Article  PubMed  Google Scholar 

  109. Sampson JR, Harris PC (1994) The molecular genetics of tuberous sclerosis. Hum Mol Genet 3 Spec No:1477–1480

    Article  CAS  PubMed  Google Scholar 

  110. Jones AC et al (1997) Molecular genetic and phenotypic analysis reveals differences between TSC1 and TSC2 associated familial and sporadic tuberous sclerosis. Hum Mol Genet 6:2155–2161

    Article  CAS  PubMed  Google Scholar 

  111. Kwiatkowski DJ (2003) Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol Ther 2:471–476

    Article  CAS  PubMed  Google Scholar 

  112. Manning BD, Cantley LC (2003) United at last: the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling. Biochem Soc Trans 31:573–578

    Article  CAS  PubMed  Google Scholar 

  113. Sampson JR (2003) TSC1 and TSC2: genes that are mutated in the human genetic disorder tuberous sclerosis. Biochem Soc Trans 31:592–596

    Article  CAS  PubMed  Google Scholar 

  114. Conway JE et al (2001) Hemangioblastomas of the central nervous system in von Hippel-Lindau syndrome and sporadic disease. Neurosurgery 48:55–62-63

    CAS  PubMed  Google Scholar 

  115. O’Callaghan FJK et al (2004) The relation of infantile spasms, tubers, and intelligence in tuberous sclerosis complex. Arch Dis Child 89:530–533

    Article  PubMed  PubMed Central  Google Scholar 

  116. Webb DW, Fryer AE, Osborne JP (1996) Morbidity associated with tuberous sclerosis: a population study. Dev Med Child Neurol 38:146–155

    Article  CAS  PubMed  Google Scholar 

  117. Sparagana SP, Roach ES (2000) Tuberous sclerosis complex. Curr Opin Neurol 13:115–119

    Article  CAS  PubMed  Google Scholar 

  118. Roach ES, Gomez MR, Northrup H (1998) Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J Child Neurol 13:624–628

    Article  CAS  PubMed  Google Scholar 

  119. Neumann HP et al (1989) Hemangioblastomas of the central nervous system. A 10-year study with special reference to von Hippel-Lindau syndrome. J Neurosurg 70:24–30

    Article  CAS  PubMed  Google Scholar 

  120. Chang SD et al (1998) Treatment of hemangioblastomas in von Hippel-Lindau disease with linear accelerator-based radiosurgery. Neurosurgery 43:28–34-35

    Article  CAS  PubMed  Google Scholar 

  121. Northrup H, Krueger DA (2013) Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr Neurol 49:243–254

    Article  PubMed  PubMed Central  Google Scholar 

  122. Teng JMC et al (2014) Dermatologic and dental aspects of the 2012 international tuberous sclerosis complex consensus statements. JAMA Dermatol 150:1095–1101

    Article  PubMed  Google Scholar 

  123. Jansen FE et al (2003) Diffusion-weighted magnetic resonance imaging and identification of the epileptogenic tuber in patients with tuberous sclerosis. Arch Neurol 60:1580–1584

    Article  PubMed  Google Scholar 

  124. Luat AF, Makki M, Chugani HT (2007) Neuroimaging in tuberous sclerosis complex. Curr Opin Neurol 20:142–150

    Article  CAS  PubMed  Google Scholar 

  125. Chandra PS et al (2006) FDG-PET/MRI coregistration and diffusion-tensor imaging distinguish epileptogenic tubers and cortex in patients with tuberous sclerosis complex: a preliminary report. Epilepsia 47:1543–1549

    Article  PubMed  Google Scholar 

  126. Chu-Shore CJ, Major P, Camposano S, Muzykewicz D, Thiele EA (2010) The natural history of epilepsy in tuberous sclerosis complex. Epilepsia 51:1236–1241

    Article  PubMed  Google Scholar 

  127. Karenfort M, Kruse B, Freitag H, Pannek H, Tuxhorn I (2002) Epilepsy surgery outcome in children with focal epilepsy due to tuberous sclerosis complex. Neuropediatrics 33:255–261

    Article  CAS  PubMed  Google Scholar 

  128. Weiner HL (2004) Tuberous sclerosis and multiple tubers: localizing the epileptogenic zone. Epilepsia 45(Suppl 4):41–42

    Article  PubMed  Google Scholar 

  129. Roszkowski M, Drabik K, Barszcz S, Jozwiak S (1995) Surgical treatment of intraventricular tumors associated with tuberous sclerosis. Childs Nerv Syst 11:335–339

    Article  CAS  PubMed  Google Scholar 

  130. Beaumont TL, Limbrick DD, Smyth MD (2012) Advances in the management of subependymal giant cell astrocytoma. Childs Nerv Syst 28:963–968

    Article  PubMed  Google Scholar 

  131. Riikonen R, Simell O (1990) Tuberous sclerosis and infantile spasms. Dev Med Child Neurol 32:203–209

    Article  CAS  PubMed  Google Scholar 

  132. Curatolo P, Seri S, Verdecchia M, Bombardieri R (2001) Infantile spasms in tuberous sclerosis complex. Brain and Development 23:502–507

    Article  CAS  PubMed  Google Scholar 

  133. Franz DN et al (2001) Lamotrigine therapy of epilepsy in tuberous sclerosis. Epilepsia 42:935–940

    Article  CAS  PubMed  Google Scholar 

  134. Kotagal P, Rothner AD (1993) Epilepsy in the setting of neurocutaneous syndromes. Epilepsia 34(Suppl 3):S71–S78

    PubMed  Google Scholar 

  135. Franz DN et al (2006) Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol 59:490–498

    Article  CAS  PubMed  Google Scholar 

  136. Pan D, Dong J, Zhang Y, Gao X (2004) Tuberous sclerosis complex: from drosophila to human disease. Trends Cell Biol 14:78–85

    Article  CAS  PubMed  Google Scholar 

  137. Lonser RR et al (2003) von Hippel-Lindau disease. Lancet Lond Engl 361:2059–2067

    Article  CAS  Google Scholar 

  138. Kaelin WG (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2:673–682

    Article  CAS  PubMed  Google Scholar 

  139. Koh MY, Lemos R, Liu X, Powis G (2011) The hypoxia-associated factor switches cells from HIF-1α- to HIF-2α-dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion. Cancer Res 71:4015–4027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Butman JA, Linehan WM, Lonser RR (2008) Neurologic manifestations of von Hippel-Lindau disease. JAMA 300:1334–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jagannathan J, Lonser RR, Smith R, DeVroom HL, Oldfield EH (2008) Surgical management of cerebellar hemangioblastomas in patients with von Hippel-Lindau disease. J Neurosurg 108:210–222

    Article  PubMed  Google Scholar 

  142. Jarrell ST, Vortmeyer AO, Linehan WM, Oldfield EH, Lonser RR (2006) Metastases to hemangioblastomas in von Hippel-Lindau disease. J Neurosurg 105:256–263

    Article  PubMed  Google Scholar 

  143. Nielsen SM et al (2016) Von Hippel-Lindau disease: genetics and role of genetic Counseling in a multiple neoplasia syndrome. J Clin Oncol 34:2172–2181

    Article  CAS  PubMed  Google Scholar 

  144. Richard S, Graff J, Lindau J, Resche F (2004) Von Hippel-Lindau disease. Lancet Lond Engl 363:1231–1234

    Article  Google Scholar 

  145. Friedrich CA (2001) Genotype-phenotype correlation in von Hippel-Lindau syndrome. Hum Mol Genet 10:763–767

    Article  CAS  PubMed  Google Scholar 

  146. Ammerman JM, Lonser RR, Dambrosia J, Butman JA, Oldfield EH (2006) Long-term natural history of hemangioblastomas in patients with von Hippel-Lindau disease: implications for treatment. J Neurosurg 105:248–255

    Article  PubMed  Google Scholar 

  147. Wanebo JE, Lonser RR, Glenn GM, Oldfield EH (2003) The natural history of hemangioblastomas of the central nervous system in patients with von Hippel-Lindau disease. J Neurosurg 98:82–94

    Article  PubMed  Google Scholar 

  148. Vougioukas VI et al (2006) Surgical treatment of hemangioblastomas of the central nervous system in pediatric patients. Childs Nerv Syst 22:1149–1153

    Article  PubMed  Google Scholar 

  149. Boström A et al (2008) Intramedullary hemangioblastomas: timing of surgery, microsurgical technique and follow-up in 23 patients. Eur Spine J 17:882–886

    Article  PubMed  PubMed Central  Google Scholar 

  150. Neumann HP et al (1992) Central nervous system lesions in von Hippel-Lindau syndrome. J Neurol Neurosurg Psychiatry 55:898–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pietilä TA, Stendel R, Schilling A, Krznaric I, Brock M (2000) Surgical treatment of spinal hemangioblastomas. Acta Neurochir 142:879–886

    Article  PubMed  Google Scholar 

  152. Niemelä M et al (1999) Long-term prognosis of haemangioblastoma of the CNS: impact of von Hippel-Lindau disease. Acta Neurochir 141:1147–1156

    Article  PubMed  Google Scholar 

  153. Shirley MD et al (2013) Sturge–weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med 368:1971–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Comi AM (2007) Update on Sturge-weber syndrome: diagnosis, treatment, quantitative measures, and controversies. Lymphat Res Biol 5:257–264

    Article  PubMed  Google Scholar 

  155. Pascual-Castroviejo I, Pascual-Pascual S-I, Velazquez-Fragua R, Viaño J (2008) Sturge-weber syndrome: study of 55 patients. Can. J Neurol Sci J Can Sci Neurol 35:301–307

    Article  Google Scholar 

  156. Sujansky E, Conradi S (1995) Sturge-weber syndrome: age of onset of seizures and glaucoma and the prognosis for affected children. J Child Neurol 10:49–58

    Article  CAS  PubMed  Google Scholar 

  157. Kossoff EH, Ferenc L, Comi AM (2009) An infantile-onset, severe, yet sporadic seizure pattern is common in Sturge-weber syndrome. Epilepsia 50:2154–2157

    Article  PubMed  Google Scholar 

  158. Thomas-Sohl KA, Vaslow DF, Maria BL (2004) Sturge-Weber syndrome: a review. Pediatr Neurol 30:303–310

    Article  PubMed  Google Scholar 

  159. Lee JS et al (2001) Sturge-weber syndrome: correlation between clinical course and FDG PET findings. Neurology 57:189–195

    Article  CAS  PubMed  Google Scholar 

  160. Hu J et al (2008) MR susceptibility weighted imaging (SWI) complements conventional contrast enhanced T1 weighted MRI in characterizing brain abnormalities of Sturge-weber syndrome. J Magn Reson Imaging 28:300–307

    Article  PubMed  PubMed Central  Google Scholar 

  161. Hoffman HJ, Hendrick EB, Dennis M, Armstrong D (1979) Hemispherectomy for Sturge-weber syndrome. Childs Brain 5:233–248

    CAS  PubMed  Google Scholar 

  162. Di Rocco C, Tamburrini G (2006) Sturge-Weber syndrome. Childs Nerv Syst 22:909–921

    Article  PubMed  Google Scholar 

  163. Roach ES et al (1994) Sturge-weber syndrome: recommendations for surgery. J Child Neurol 9:190–192

    Article  CAS  PubMed  Google Scholar 

  164. Arzimanoglou A, Aicardi J (1992) The epilepsy of Sturge-weber syndrome: clinical features and treatment in 23 patients. Acta Neurol Scand Suppl 140:18–22

    Article  CAS  PubMed  Google Scholar 

  165. Lo Muzio L (2008) Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Orphanet J Rare Dis 3:32

    Article  PubMed  PubMed Central  Google Scholar 

  166. Kimonis VE et al (1997) Clinical manifestations in 105 persons with nevoid basal cell carcinoma syndrome. Am J Med Genet 69:299–308

    Article  CAS  PubMed  Google Scholar 

  167. Evans DG et al (2010) Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service. Am J Med Genet A 152A:327–332

    Article  CAS  PubMed  Google Scholar 

  168. Gorlin RJ, Goltz RW (1960) Multiple nevoid basal-cell epithelioma, jaw cysts and bifid rib. A syndrome. N Engl J Med 262:908–912

    Article  CAS  PubMed  Google Scholar 

  169. Takahashi C et al (2009) Germline PTCH1 mutations in Japanese basal cell nevus syndrome patients. J Hum Genet 54:403–408

    Article  CAS  PubMed  Google Scholar 

  170. Hahn H et al (1996) Mutations of the human homolog of drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85:841–851

    Article  CAS  PubMed  Google Scholar 

  171. Johnson RL et al (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272:1668–1671

    Article  CAS  PubMed  Google Scholar 

  172. Smith MJ et al (2014) Germline mutations in SUFU cause Gorlin syndrome-associated childhood medulloblastoma and redefine the risk associated with PTCH1 mutations. J Clin Oncol 32:4155–4161

    Article  CAS  PubMed  Google Scholar 

  173. Pastorino L et al (2009) Identification of a SUFU germline mutation in a family with Gorlin syndrome. Am J Med Genet A 149A:1539–1543

    Article  CAS  PubMed  Google Scholar 

  174. Xie J, Bartels CM, Barton SW, Gu D (2013) Targeting hedgehog signaling in cancer: research and clinical developments. OncoTargets Ther 6:1425–1435

    Article  CAS  Google Scholar 

  175. Xie J et al (1998) Activating smoothened mutations in sporadic basal-cell carcinoma. Nature 391:90–92

    Article  CAS  PubMed  Google Scholar 

  176. Lee Y-W et al (2007) Identification of a novel mutation in the PTCH gene in a Korean family with naevoid basal cell carcinoma syndrome. Clin Exp Dermatol 32:202–203

    Article  PubMed  Google Scholar 

  177. Kieran MW (2014) Targeted treatment for sonic hedgehog-dependent medulloblastoma. NeuroOncol 16:1037–1047

    CAS  Google Scholar 

  178. Shanley S et al (1994) Nevoid basal cell carcinoma syndrome: review of 118 affected individuals. Am J Med Genet 50:282–290

    Article  CAS  PubMed  Google Scholar 

  179. Thalakoti S, Geller T (2015) Basal cell nevus syndrome or Gorlin syndrome. Handb Clin Neurol 132:119–128

    Article  PubMed  Google Scholar 

  180. Bresler SC, Padwa BL, Granter SR (2016) Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Head Neck Pathol 10:119–124

    Article  PubMed  PubMed Central  Google Scholar 

  181. Torrelo A et al (2014) Early-onset acral basal cell carcinomas in Gorlin syndrome. Br J Dermatol 171:1227–1229

    Article  CAS  PubMed  Google Scholar 

  182. Diociaiuti A et al (2015) Naevoid basal cell carcinoma syndrome in a 22-month-old child presenting with multiple basal cell carcinomas and a fetal rhabdomyoma. Acta Derm Venereol 95:243–244

    Article  PubMed  Google Scholar 

  183. Guha D et al (2018) Management of peripheral nerve sheath tumors: 17 years of experience at Toronto Western Hospital. J Neurosurg 128(4):1226–1234. https://doi.org/10.3171/2017.1.JNS162292

    Article  PubMed  Google Scholar 

  184. Taylor MD et al (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123:465–472

    Article  CAS  PubMed  Google Scholar 

  185. Ramanathan S, Kumar D, Al Heidous M, Palaniappan Y (2015) Delayed diagnosis of Gorlin syndrome: learning from mistakes! J Pediatr Neurosci 10:359–361

    Article  PubMed  PubMed Central  Google Scholar 

  186. Shiohama T et al (2017) Brain morphology in children with nevoid basal cell carcinoma syndrome. Am J Med Genet A 173:946–952

    Article  CAS  PubMed  Google Scholar 

  187. Jones EA, Sajid MI, Shenton A, Evans DG (2011) Basal cell carcinomas in Gorlin syndrome: a review of 202 patients. J Skin Cancer 2011:217378

    Article  PubMed  Google Scholar 

  188. Hogan RE, Tress B, Gonzales MF, King JO, Cook MJ (1996) Epilepsy in the nevoid basal-cell carcinoma syndrome (Gorlin syndrome): report of a case due to a focal neuronal heterotopia. Neurology 46:574–576

    Article  CAS  PubMed  Google Scholar 

  189. Evans DG et al (1993) Complications of the naevoid basal cell carcinoma syndrome: results of a population based study. J Med Genet 30:460–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gorlin RJ (2004) Nevoid basal cell carcinoma (Gorlin) syndrome. Genet Med 6:530–539

    Article  PubMed  Google Scholar 

  191. Bree AF, Shah MR, BCNS Colloquium Group (2011) Consensus statement from the first international colloquium on basal cell nevus syndrome (BCNS). Am J Med Genet A 155A:2091–2097

    Article  PubMed  Google Scholar 

  192. Evans DG, Birch JM, Orton CI (1991) Brain tumours and the occurrence of severe invasive basal cell carcinoma in first degree relatives with Gorlin syndrome. Br J Neurosurg 5:643–646

    Article  CAS  PubMed  Google Scholar 

  193. Strong LC (1977) Genetic and environmental interactions. Cancer 40:1861–1866

    Article  CAS  PubMed  Google Scholar 

  194. Wallin JL, Tanna N, Misra S, Puri PK, Sadeghi N (2007) Sinonasal carcinoma after irradiation for medulloblastoma in nevoid basal cell carcinoma syndrome. Am J Otolaryngol 28:360–362

    Article  PubMed  Google Scholar 

  195. Choudry Q, Patel HC, Gurusinghe NT, Evans DG (2007) Radiation-induced brain tumours in nevoid basal cell carcinoma syndrome: implications for treatment and surveillance. Childs Nerv Syst 23:133–136

    Article  CAS  PubMed  Google Scholar 

  196. O’Malley S, Weitman D, Olding M, Sekhar L (1997) Multiple neoplasms following craniospinal irradiation for medulloblastoma in a patient with nevoid basal cell carcinoma syndrome. Case report. J Neurosurg 86:286–288

    Article  PubMed  Google Scholar 

  197. Sartip K, Kaplan A, Obeid G, Kadom N (2013) Neuroimaging of nevoid basal cell carcinoma syndrome (NBCCS) in children. Pediatr Radiol 43:620–627

    Article  PubMed  Google Scholar 

  198. Jain S, Song R, Xie J (2017) Sonidegib: mechanism of action, pharmacology, and clinical utility for advanced basal cell carcinomas. OncoTargets Ther 10:1645–1653

    Article  CAS  Google Scholar 

  199. Huq AJ et al (2017) Cohort study of Gorlin syndrome with emphasis on standardised phenotyping and quality of life assessment. Intern Med J 47:664–673

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Rutka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taccone, M.S., Rutka, J.T. (2019). Neurocutaneous Syndromes. In: Tonn, JC., Reardon, D., Rutka, J., Westphal, M. (eds) Oncology of CNS Tumors. Springer, Cham. https://doi.org/10.1007/978-3-030-04152-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04152-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04151-9

  • Online ISBN: 978-3-030-04152-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics