Skip to main content

Endophytic Fungi: Role in Dye Decolorization

  • Chapter
  • First Online:
Advances in Endophytic Fungal Research

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Endophytic fungi inhabit plant tissues, in either a symbiotic or mutualistic relationship, without harming the host plant. They are known for the production of secondary metabolites, which shield the host from invading pathogens. Endophytic fungi produce extracellular enzymes like laccases that have a potential role to play in dye decolorization. Dyes are complex organic compounds that are derived from biological, chemical, and physical processes and are useful for all industries, but mainly the textile, leather, paper, and food industries. In contrast, the world faces ecological problems due to the toxicity of synthetic compounds. They are nondegradable and persist for a long time. This chapter focuses on the decolorization of various dyes through endophytic fungi using various processes like biomagnification, biosorption, bioaccumulation, and enzymatic degradation. Moreover, this chapter explains the efficiency of endophytic fungi in the degradation of various dyes, for example, Congo red, methyl orange, methyl red, and crystal violet. Therefore, it is essential to carry out toxicity studies on dye degradation and to develop an eco-friendly technology that may degrade dyes easily.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin RMA (2008) Decolorization and biodegradation of crystal violet and malachite green by Fusarium solani (Martius) Saccardo. A comparative study on biosorption of dyes by the dead fungal biomass. AEJB 1:17–31

    Google Scholar 

  • Aksu Z (2003) Reactive dye bioaccumulation by Saccharomyces cerevisiae. Process Biochem 38:1437–1444

    Article  CAS  Google Scholar 

  • Aksu Z, Donmez G (2005) Combined effects of molasses sucrose and reactive dye on the growth and dye bioaccumulation properties of Candida tropicalis. Process Biochem 40:2443–2454

    Article  CAS  Google Scholar 

  • Arora DS, Sharma RK (2010) Ligninolytic fungal laccases and their biotechnological applications. Appl Biochem Biotechnol 160(6):1760–1788

    Article  CAS  Google Scholar 

  • Asad S, Amoozegar MA, Pourbabaee AA, Sarbolouki MN, Dastgheib SM (2007) Decolorization of textile dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol 98:2082–2088

    Article  CAS  PubMed  Google Scholar 

  • Asgher M, Shah SAH, Ali M, Legge RL (2006) Decolorization of some reactive textile dyes by white rot fungi isolated in Pakistan. World J Microbiol Biotechnol 22:89–93

    Article  CAS  Google Scholar 

  • Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19:771–783

    Article  CAS  PubMed  Google Scholar 

  • Balaji V, Vinayagamoorthi D, Palanisamy A, Anbalagan S (2012) Degradation of reactive Red HE7B and Yellow FN2R dyes by fungal isolates. J Acad Indus Res 1(3):132–136

    Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol 61:103–103

    Google Scholar 

  • Bayramoglu G, Arica MY (2007) Biosorption of benzidine based textile dyes “Direct Blue 1 and Direct Red 128” using native and heat-treated biomass of Trametes versicolor. J Hazard Mater 143:135–143

    Article  CAS  PubMed  Google Scholar 

  • Ben Younes S, Bouallagui Z, Sayadi S (2012) Catalytic behaviour and detoxifying ability of an atypical homotrimeric laccase from the thermophilic strain Scytalidium thermophilum on selected Azo and Triarylmethane dyes. J Mol Catal B Enzym 79:41–48

    Article  CAS  Google Scholar 

  • Bezalel L, Hadar Y, Cerniglia CE (1997) Enzymatic mechanisms involved in phenantrene degradation by white-rot fungus Pleurotus ostreatus. Appl Environ Microbiol 63:2495–2501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj A, Agrawal P (2014) A review fungal endophytes: as a store house of bioactive compound. World J Pharm Pharm Sci 3:228–237

    Google Scholar 

  • Borchert M, Libra JA (2001) Decolorization of reactive dyes by the white rot fungus Trametes versicolor in sequencing batch reactors. Biotechnol Bioeng 75:313–321

    Article  CAS  PubMed  Google Scholar 

  • Bulla LMC, Polonio JC, Portela-Castro ALB, Kava V, Azevedo JL, Pamphile JA (2017) Activity of the endophytic fungi Phlebia sp. and Paecilomyces formosus in decolourisation and the reduction o reactive dyes’ cytotoxicity in fish erythrocytes. Environ Monit Assess 189(88):1–11

    CAS  Google Scholar 

  • Campos R, Kandelbauer A, Robra KH, Cavaco-Paulo A, Gubitz GM (2001) Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. J Biotechnol 89:131–139

    Article  CAS  PubMed  Google Scholar 

  • Campos PA, Levin LN, Wirth SA (2016) Heterologous production, characterization and dye decolorization ability of a novel thermostable laccase isoenzyme from Trametes trogii BAFC 463. Process Biochem 51:895–903

    Article  CAS  Google Scholar 

  • Cha CJ, Doerge DR, Cerniglia CE (2001) Biotransformation of Malachite Green by the fungus Cunninghamella elegans. Appl Environ Microbiol 67:4358–4360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chagas EP, Durrant LR (2001) Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzym Microb Technol 29:473–477

    Article  CAS  Google Scholar 

  • Chanyal S, Agrawal PK (2017) Decolorization of textile by laccase from newly isolated endophytic fungus Daldinia sp. Kavaka 48(1):33–41

    Google Scholar 

  • Chavan RB (1995) Revival of natural dyes—a word of caution to environmentalists. In: Symposium proceedings eco-friendly textile processing. India and Japan, IIT, Delhi, p 83–186

    Google Scholar 

  • Chengaiah B, Rao KM, Kumar KM, Alagusundaram M, Chetty CM (2010) Medicinal importance of natural dyes—a review. Int J PharmTech Res 2(1):144–154

    CAS  Google Scholar 

  • Chung KT, Stevens SE (1993) Decolorization of azo dyes environmental microorganisms and helminthes. Environ Toxicol Chem 12:2121–2132

    CAS  Google Scholar 

  • Conneely A, Smyth WF, McMullan G (2002) Study of the white-rot fungal degradation of selected phthalocyanine dyes by capillary electrophoresis and liquid chromatography. Anal Chim Acta 451:259–270

    Article  CAS  Google Scholar 

  • Couto SR, Rivela I, Munoz MR, Sanroma’n A (2000) Stimulation of ligninolytic enzyme production and the ability to decolorize Poly R-478 in semi-solid-state cultures of Phanerochaete chrysosporium. Bioresour Technol 74:159–164

    Article  CAS  Google Scholar 

  • Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114–1148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eichlerova I, Homolka L, Lisa L, Nerud F (2005) Orange G and Remazol Brilliant Blue R decolorization by white rot fungi Dichomitus squalens, Ischnoderma resinosum and Pleurotus. Chemosphere 60:398–404

    Article  CAS  PubMed  Google Scholar 

  • Elbanna K, Hassan G, Khider M, Mandour R (2010) Safe biodegradation of textile azo dyes by newly isolated lactic acid bacteria and detection of plasmids associated with degradation. J Bioremed Biodegr 1:1–6

    Google Scholar 

  • Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Viraraghavan T (2001) Fungal decolourization of dye wastewaters: a review. Bioresour Technol 79:251–262

    Article  CAS  PubMed  Google Scholar 

  • Gahlout M, Gupte S, Gupte A (2013) Optimization of culture condition for enhanced decolorization and degradation of azo dye reactive violet 1 with concomitant production of ligninolytic enzymes by Ganoderma cupreum AG-1. 3 Biotech 3(2):143–152

    Article  PubMed  Google Scholar 

  • Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Anton Van Leeuwen 108:267–289

    Article  Google Scholar 

  • Gou M, Qu Y, Zhou J, Ma F, Tan L (2009) Azo dye decolorization by a new fungal isolate Penicillium sp. QQ and fungal-bacterial cocultures. J Hazard Mater 170:314–319

    Article  CAS  PubMed  Google Scholar 

  • Gouda S, Das G, Sen SK, Shin HS, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538

    Article  PubMed  PubMed Central  Google Scholar 

  • Guaratini CCI, Zanoni MVB (2000) Textile dyes. Química Nova 23(1):71–78

    Article  CAS  Google Scholar 

  • Harvey JW, Keith AS (1983) Studies of the efficacy and potential hazards of methylene blue therapy in aniline-induced haemoglobinaemia. Br J Haematol 54(1):29–41

    Article  CAS  PubMed  Google Scholar 

  • Hassani AH, Mirzayee R, Nasseri S, Borghei M, Gholami M, Torabifar B (2008) Nanofiltration process on dye removal from simulated textile wastewater. Int J Environ Sci Technol 5(3):401–408

    Article  CAS  Google Scholar 

  • Heinfling A, Martı’nez MJ, Martínez AT, Bergbauer M, Szewzyk U (1998) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eringii in a manganese-independent reaction. Appl Environ Microbiol 64:2788–2793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heinfling-Weidtmann A, Reemtsma T, Storm T, Szewzyk U (2001) Sulfophthalimide as major metabolite formed from sulfonated phthalocyanine dyes by the white-rot fungus Bjerkandera adusta. FEMS Microbiol Lett 203:179–183

    Article  CAS  PubMed  Google Scholar 

  • Husain Q (2010) Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Rev Environ Sci Biotechnol 9(2):117–140

    Article  CAS  Google Scholar 

  • Iqbal M, Saeed A (2007) Biosorption of reactive dye by loofa sponge-immobilized fungal biomass of Phanerochaete chrysosporium. Process Biochem 42:1160–1164

    Article  CAS  Google Scholar 

  • Jalgaonwala RE, Mohite BV, Mahajan RT (2011) Natural products from plant associated endophytic fungi. J Microbiol Biotechnol Res 1:21–32

    Google Scholar 

  • Jarosz-Wilkołazka A, Rdest-Kochman˜ ska J, Malarczyk E, Wardas W, Leonowicz A (2002) Fungi and their ability to decolorize azo and antraquinonic dyes. Enzym Microb Technol 30:566–572

    Article  Google Scholar 

  • Kabbout R, Taha S (2014) Biodecolorization of textile dye effluent by biosorption on fungal biomass materials. Phys Procedia 55:437–444

    Article  CAS  Google Scholar 

  • Khan RP, Bhawana FMH (2013) Microbial decolorization and degradation of synthetic dyes: a review. Rev Environ Sci Biotechnol 12(1):75–97

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  PubMed  Google Scholar 

  • Kumara MP, Soujanya KN, Ravikanth G, Vasudeva R, Gane- shaiah KN, Uma Shaanker R (2014) Rohitukine, a chromone alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from Dysoxylum binectariferum Hook.f and Amoora rohituka (Roxb). Phytomedicine 21:541–546

    Article  CAS  PubMed  Google Scholar 

  • Levin L, Papinutti L, Forchiassin F (2004) Evaluation of Argentinean white-rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Bioresour Technol 94:169–176

    Article  CAS  PubMed  Google Scholar 

  • Maas R, Chaudhari S (2005) Adsorption and biological decolourization of azo dye Reactive Red 2 in semicontinuous anaerobic reactors. Process Biochem 40(2):699–705

    Article  CAS  Google Scholar 

  • Marcharchand S, Ting ASY (2017) Trichoderma asperellum cultured in reduced concentrations of synthetic medium retained dye decolourization efficacy. J Environ Manag 203(1):542–549

    Article  CAS  Google Scholar 

  • Martins MAM, Lima N, Silvestre AJD, Queiroz MJ (2003) Comparative studies of fungal degradation of single or mixed bioaccessible reactive azo dyes. Chemosphere 52:967–973

    Article  CAS  PubMed  Google Scholar 

  • Mcmullan G, Mehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WF (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56(1–2):81–87

    Article  CAS  PubMed  Google Scholar 

  • Mishra VK, Passari AK, Singh BP (2016) In vitro antimycotic and biosynthetic potential of fungal endophytes associated with Schima Wallichii. In: Kumar P et al (eds) Current trends in disease diagnostics. Springer International Publishing, Basel, pp 367–381

    Chapter  Google Scholar 

  • Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Gupta VK, Singh BP (2017) Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD GC-MS. PLoS One 12(10):1–24. https://doi.org/10.1371/journal.pone.0186234

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Kurup L, Singh A (2006) Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials – bottom ash and de-oiled soya as adsorbents. J Hazard Mater 138(1):95–105

    Article  CAS  PubMed  Google Scholar 

  • Moldes D, Couto SR, Cameselle C, MA S’n (2003) Study of the degradation of dyes by MnP of Phanerochaete chrysosporium produced in a fixed-bed bioreactor. Chemosphere 51:295–303

    Article  CAS  PubMed  Google Scholar 

  • Moore SB, Ausley LW (2004) Systems thinking and green chemistry in the textile industry: concepts, technologies and benefits. J Clean Prod 12:585–601

    Article  Google Scholar 

  • Muthezhilan R, Vinoth S, Gopi K, Jaffar Hussain A (2014) A dye degrading potential of immobilized laccase from endophytic fungi of coastal sand dune plants. Int J Chem Tech Res 6(9):4154–4160

    CAS  Google Scholar 

  • Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J 2014:11

    Article  Google Scholar 

  • Ngieng NS, Zulkharnain A, Roslan HA, Husaini A (2013) Decolorization of synthetic dyes by endophytic fungal flora isolated from Senduduk Plant (Melastoma malabathricum). Biotechnology 2013:260730

    PubMed  PubMed Central  Google Scholar 

  • Novotny C, Erbanova P, Cajthaml T, Rothschild N, Dosoretz C, Sasek V (2000) Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl Microbiol Biotechnol 54:850–853

    Article  CAS  PubMed  Google Scholar 

  • Novotny C, Rawal B, Bhatt M, Patel M, Sasek V, Molitoris HP (2001) Capacity of Irpex lacteus and Pleurotus ostreatus for decolorization of chemically different dyes. J Biotechnol 89:113–122

    Article  CAS  PubMed  Google Scholar 

  • Novotny C, Svobodova K, Kasinath A, Erbanova P (2004) Biodegradation of synthetic dyes by Irpex lacteus under various growth conditions. Int Biodeter Biodegr 54:215–223

    Article  CAS  Google Scholar 

  • O’Neill C, Hawkes F, Hawkes D, Lourenco N, Pinheiro H, Delee W (1999) Colour in textile effluents-sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 74:1009–1018

    Article  Google Scholar 

  • Pant D, Singh A, Satyawali Y, Gupta RK (2008) Effect of carbon and nitrogen source amendment on synthetic dyes decolourizing efficiency of white-rot fungus, Phanerochaete chrysosporium. J Environ Biol 29:79–84

    CAS  PubMed  Google Scholar 

  • Podgornik H, Poljansek I, Perdih A (2001) Transformation of Indigo carmine by Phanerochaete chrysosporium ligninolytic enzymes. Enzym Microb Technol 29:166–172

    Article  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  PubMed  Google Scholar 

  • Priti V, Ramesha BT, Singh S, Ravikanth G, Ganeshaiah KN, Suryanaraynan TS, Shaanker U (2009) How promising are endophytic fungi as alternative sources of plant secondary metabolites? Curr Sci 97(4):477–478

    Google Scholar 

  • Puvaneswari N, Muthukrishnan J, Gunasekaran P (2006) Toxicity assessment and microbial degradation of azo dyes. Indian J Exp Biol 44:618 626

    Google Scholar 

  • Rai M, Agarkar G, Rathod D (2014) Multiple applications of endophytic Colletotrichum species occurring in medicinal plants, in novel plant bioresources: applications in food, medicine and cosmetics. In: Gurib-Fakim A (ed) Novel plant bioresources. Wiley, Chichester, pp 227–236

    Chapter  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 298:1581

    Article  CAS  PubMed  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues E, Pickard A, Vazquez-Duhalt R (1999) Industrial dye decolorization by laccases from ligninolytic fungi. Curr Microbiol 38:27–32

    Article  Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig Adapt Strat Global Change 9:261–272

    Article  Google Scholar 

  • Rya RPK, Germaine A, Franks DJ, Ryan DN (2007) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Google Scholar 

  • Sack U, Heinze TM, Deck J, Cerniglia CE, Martens R, Zadrazil F, Fritsche W (1997) Comparison of phenantrene and pyrene degradation by different wood-decaying fungi. Appl Environ Microbiol 63:3919–3925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saraf S, Vaidya VK (2015) Comparative study of biosorption of textile dyes using fungal biosorbents. Int J Curr Microbiol App Sci 2:357–365

    Google Scholar 

  • Saratale GD, Kalme SD, Govindwar SP (2006) Decolorisation of textile dyes by Aspergillus ochraceus (NCIM-1146). IJBT 5:407–410

    CAS  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Sen SK, Raut S, Bandopadhyay P, Raut S (2016) Fungal decolouration and degradation of azo dyes: a review. Fungal Biol Rev 30(3):112–133

    Article  Google Scholar 

  • Shahid M, Mohammad F, Islam S (2013) Recent advancements in natural dye applications: a review. J Clean Prod 53:310–331

    Article  CAS  Google Scholar 

  • Shin KS, Oh IK, Kim CHJ (1997) Production and purification of Remazol brilliant blue decolorizing peroxidase from the culture filtrate of Pleurotus ostreatus. Appl Environ Microbiol 63:1744–1748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shweta S, Shivanna MB, Gurumurthy BR, Shaanker U, Santhosh Kumar TR, Ravikanth G (2014) Inhibition of fungal endophytes by camptothecine produced by their host plant, Nothapodytes nimmoniana (Grahm) Mabb. (Icacinaceae). Curr Sci 107:994–1000

    CAS  Google Scholar 

  • Si J, Peng F, Cui BK (2013) Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal tolerant laccase from Trametes pubescens. Bioresour Technol 128:49–57

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Jain A, Panwar S, Gupta D, Khare SK (2005) Antimicrobial activity of some natural dyes. Dyes Pigments 66(2):99–102

    Article  CAS  Google Scholar 

  • Singh R, Singh P, Sharma R (2014) Microorganism as a tool of bioremediation technology for cleaning environment: a review. Proc Int Acad Ecol Environ Sci 4(1):1–6

    Google Scholar 

  • Siva R (2007) Status of natural dyes and dye yielding plants in India. Curr Sci 92(7):916–925

    CAS  Google Scholar 

  • Spadaro JT, Gold MH, Renganathan V (1992) Degradation of azo dyes by the lignin degrading fungus P chrysosporium. Appl Environ Microb 58:2397–2340

    CAS  Google Scholar 

  • Specian V, Sarragiotto MH, Pamphile JA, Clemente E (2012) Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata. Braz J Microbiol 43:1174–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staniek A, Woerdenbag HJ, Kayser O (2008) Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery. J Plant Interact 3:75–98

    Article  CAS  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Guo N, Niu LL, Wang QF, Zang YP, Zu YG et al (2017) Production of laccase by a new Myrothecium verrucaria MD-R-16 isolated from Pigeon Pea [Cajanus cajan (L.) Millsp.] and its application on dye decolorization. Molecules 22:673

    Article  CAS  PubMed Central  Google Scholar 

  • Swamy J, Ramsay JA (1999a) The evaluation of white rot fungi in the decoloration of textile dyes. Enzym Microb Technol 24:130–137

    Article  CAS  Google Scholar 

  • Swamy J, Ramsay JA (1999b) Effects of Mn2+ and NHþ 4 concentrations on laccase and manganese peroxidase production and Amaranth decoloration by Trametes versicolor. Appl Microbiol Biotechnol 51:391–396

    Article  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Taskin M, Erdel S (2010) Reactive dye bioaccumulation by fungus Aspergillus niger isolated from the effluent of sugar fabric-contaminated soil. Toxicol Ind Health 26(4):239–247

    Article  CAS  PubMed  Google Scholar 

  • Ting ASY, Lee MVJ, Chow YY, Cheong SL (2016) Novel exploration of endophytic Diaporthe sp. for the biosorption and biodegradation of triphenylmethane dyes. Water Air Soil Pollut 227:109

    Article  CAS  Google Scholar 

  • Tobin JM, White C, Gadd GM (1994) Metal accumulation by fungi: applications in environment biotechnology. J Ind Microbiol 13:126–130

    Article  CAS  Google Scholar 

  • Uzma F, Hashem A, Murthy N, Mohan HD, Kamath PV, Singh BP, Venkataramana M, Gupta VK, Siddaiah CN, Chowdappa S, Alqaeawi AA, Abd-Allah EF (2018) Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol 9(309):1–37. https://doi.org/10.3389/fphar.2018.00309

  • Vankar PS (2000) Chemistry of natural dyes. Resonance 5(10):73–80

    Article  CAS  Google Scholar 

  • Welham A (2000) The theory of dyeing (and the secret of life). J Soc Dye Colour 116:140–143

    CAS  Google Scholar 

  • Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, Van der Lelie D (2010) Comparative genomics and functional analysis of niche specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35(2):299–323

    Article  CAS  Google Scholar 

  • Yang J, Li W, Ng TB, Deng X, Lin J, Ye X (2017) Laccases: production, expression, regulation, and applications in pharmaceutical biodegradation. Front Microbiol 8:832

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeroual Y, Kim BS, Kim CS, Blaghen M, Lee KM (2006) Biosorption of Bromophenol blue from aqueous solutions by Rhizopus stolonifer biomass. Water Air Soil Pollut 177:135–146

    Article  CAS  Google Scholar 

  • Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11:159–168

    Article  CAS  PubMed  Google Scholar 

  • Zhuo R, Yuan P, Yang Y, Zhang S, Ma F, Zhang X (2017) Induction of laccase by metal ions and aromatic compounds in Pleurotus ostreatus HAUCC 162 and decolorization of different synthetic dyes by the extracellular laccase. Biochem Eng J 117:62–72

    Article  CAS  Google Scholar 

  • Zollinger H (1987) Colour chemistry: synthesis, properties of organic dyes and pigments. VCH Publishers, New York, pp 92–100

    Google Scholar 

  • Zollinger H (1991) Color chemistry: synthesis, properties and application of organic dyes and pigments. Angew Chem Int Ed 496:456–980

    Google Scholar 

  • Zothanpuia PAK, Leo VV, Kumar B, Chnadra P, Nayak C, Hashem A, Abd Allah EF, Alqarawi AA, Singh BP (2018) Bioprospection of actinobacteria derived from freshwater sediments for their potential to produce antimicrobial compounds. Microb Cell Fact 17(1):68. https://doi.org/10.1093/chromsci/bmy050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

BPS is thankful to the Department of Biotechnology, Government of India, New Delhi, for financial support under DBT’s Unit of Excellence Programme for NE (102/IFD/SAN/4290-4291/2016-2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhim Pratap Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tochhawng, L., Mishra, V.K., Passari, A.K., Singh, B.P. (2019). Endophytic Fungi: Role in Dye Decolorization. In: Singh, B. (eds) Advances in Endophytic Fungal Research. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-03589-1_1

Download citation

Publish with us

Policies and ethics