Skip to main content

Gene Flow in Carrot

  • Chapter
  • First Online:
The Carrot Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

In this chapter, we first present characteristics of carrots that will affect gene flow and discuss dispersal via pollen by insect pollinators and via seeds by wind and animals. Although carrot is often referred to as a biennial, we introduce the various life history strategies observed in wild carrot populations as these can impact population growth and the range expansion of wild carrots over the landscape. We then review the studies of gene flow between crops, between crop and wild carrot and among wild carrot populations, concentrating on studies that used molecular markers. The consequences of these different types of gene flow (among cultivars, between crop and wild, and among wild) are then discussed. A major goal of biotechnology risk assessment for crops is to improve predictions of the fate of escaped genes either to other crop fields or to wild populations. We suggest as a priority for future studies to incorporate population dynamics with population genetics when modeling the fate of introduced genes. Improving our understanding of the factors that affect the spread of escaped genes will lead to the design of better management strategies to contain and limit their spread.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Aslam M (2002) Pollinators visiting carrot (Daucus carota L.) seed crop. J Res (Sci) 13:31–35

    Google Scholar 

  • Alessandro MS, Galmarini CR (2007) Inheritance of vernalization requirement in carrot. J Am Soc Hort Sci 132:525–529

    Article  Google Scholar 

  • Alessandro MS, Galmarini CR, Iorizzo M, Simon PW (2013) Molecular mapping of vernalization requirement and fertility restoration genes in carrot. Theor Appl Genet 126:415–423

    Article  PubMed  Google Scholar 

  • Baranski R, Maksylewicz-Kaul A, Nothnagel T, Cavagnaro PF, Simon PW, Grzebelus D (2012) Genetic diversity of carrot (Daucus carota L.) cultivars revealed by analysis of SSR loci. Genet Resour Crop Evol 59(2):163–170

    Article  Google Scholar 

  • Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345

    Article  CAS  PubMed  Google Scholar 

  • Beerli P, Felsenstein J (1999) Maximum likelihood estimation of migration rates and effective population numbers in two populations. Genetics 152:763–773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bilang R, Potrykus I (1998) Containing excitement over transplastomic plants. Nat Biotechnol 16:333–334

    Article  CAS  PubMed  Google Scholar 

  • Birky CW Jr (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu Rev Genet 35:125–148

    Article  CAS  PubMed  Google Scholar 

  • Blanchard JL, Lynch M (2000) Organellar genes—why do they end up in the nucleus? Trends Genet 16:315–320

    Article  CAS  PubMed  Google Scholar 

  • Bohart GE, Nye WP (1960) Insect pollinators of carrots in Utah. Utah Aer Res Bull 419:16p

    Google Scholar 

  • Bradeen JM, Bach IC, Briard M, Le Clerc V, Grzebelus D, Senalik DA, Simon PW (2002) Molecular diversity analysis of cultivated carrot (Daucus carota L.) and wild Daucus populations reveals a genetically nonstructured composition. J Am Soc Hort Sci 127(3):383–391

    Article  CAS  Google Scholar 

  • Brunet J, Larson-Rabin Z, Stewart CM (2012) The distribution of genetic diversity within and among populations of the Rocky Mountain columbine: the impact of gene flow, pollinators and mating system. Int J Plant Sci 173:484–494

    Article  Google Scholar 

  • Burczyk J, Adams WT, Moran GF, Griffin AR (2002) Complex patterns of mating revealed in a Eucalyptus regnans seed orchard using allozyme markers and the neighbourhood model. Mol Ecol 11(11):2379–2391

    Article  CAS  PubMed  Google Scholar 

  • Burke JM (2004) When good plants go bad…. Evolution 58:1637–1638

    Google Scholar 

  • Cavagnaro PF, Chung SM, Manin S, Yildiz M, Ali A, Alessandro MS, Iorizzo M, Senalik DA, Simon PW (2011) Microsatellite isolation and marker development in carrot—genomic distribution, linkage mapping, genetic diversity analysis and marker transferability across Apiaceae. BMC Genom 12(1):386

    Article  CAS  Google Scholar 

  • Chapman MA, Burke JM (2006) Letting the gene out of the bottle: the population genetics of GM crops. New Phytol 170:429–443

    Article  CAS  PubMed  Google Scholar 

  • Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot 75:1443–1458

    Article  Google Scholar 

  • Craig W, Tepfer M, Degrassil G, Ripandelli D (2008) An overview of general features of risk assessments of genetically modified crops. Euphytica 164:853–880

    Article  Google Scholar 

  • Daniell H, Edwards KJ (2011) Chloroplast biotechnololgy. Plant Biotechnol J 9:525–526

    Article  PubMed  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson MM, Butler RC, Howlett BG (2010) Apis mellifera and Megachile rotundata: a comparison of behaviour and seed yield in a hybrid carrot seed crop. New Zeal J Crop Hort Sci 38:113–117

    Article  Google Scholar 

  • de Jong TC, Grebenstein C, Tamis WLM (2016) Demography and life history of Daucus carota L. populations in the Netherlands. Flora 224:154–158

    Article  Google Scholar 

  • Ellis JR, Bentley KE, McCauley DE (2008) Detection of rare paternal leakage in controlled crosses of the endangered sunflower Helianthus verticillatus. Heredity 100:574–580

    Article  CAS  PubMed  Google Scholar 

  • Ellstrand NC (2003) Current knowledge of gene flow in plants: implications for transgene flow. Philos Trans R Soc Lond B 358:1163–1170

    Article  Google Scholar 

  • Ellstrand NC, Meirmans P, Rong J, Bartsch D, Ghosh A, De Jong TJ, Haccou P, Lu BR, Snow AA, Neal Stewart C Jr, Strasburg JL (2013) Introgression of crop alleles into wild or weedy populations. Ann Rev Ecol Evol Syst 44:325–345

    Article  Google Scholar 

  • Ghosh A (2012) Calculating hazard rates of introgression with branching processes. Doctoral thesis, Leiden University, Leiden

    Google Scholar 

  • Grebenstein C, Kos SP, de Jong TJ, Tamis WLM, de Snoo GR (2013) Morphological markers for the detection of introgression from cultivated into wild carrot (Daucus carota L.) reveal dominant domestication traits. Plant Biol 15:531–540

    Article  CAS  PubMed  Google Scholar 

  • Greene SL, Kesoju SR, Martin RC, Kramer M (2015) Occurrence of transgenic feral alfalfa (Medicago sativa subsp. sativa L.) in alfalfa seed production areas in the United States. PLoS One. https://doi.org/10.1371/journal.pone.0143296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gressel J (1999) Tandem constructs: preventing the rise of superweeds. Trends Biotechnol 17:361–366

    Article  CAS  PubMed  Google Scholar 

  • Grevich JJ, Daniell H (2005) Chloroplast genetic engineering: recent advances and future perspectives. Crit Rev Plant Sci 24:83–107

    Article  CAS  Google Scholar 

  • Gross KL (1981) Predictions of fate from rosette size in four biennial plants species: Verbascum thapsus, Oenothera biennis, Daucus carota, and Tragoponon dubius. Oecologia 48:209–213

    Article  PubMed  Google Scholar 

  • Gross KL, Werner PA (1982) Colonizing abilities of biennial plant-species in relation to ground cover—implications for their distributions in a successional sere. Ecology 63:921–931

    Article  Google Scholar 

  • Grzebelus D, Baranski R, Spalik K, Allender C, Simon PW (2011) Daucus. In: Wild crop relatives: genomic and breeding resources. Springer, Berlin, Heidelberg, pp 91–113

    Chapter  Google Scholar 

  • Grzebelus D, Iorizzo M, Senalik D, Ellison S, Cavagnaro P, Macko-Podgorni A, Heller-Uszynska K, Kilian A, Nothnagel T, Allender C, Simon PW (2014) Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers. Mol Breeding 33(3):625–637

    Article  CAS  Google Scholar 

  • Harrison P, Dale H (1966) The effect of grazing and clipping on the control of wild carrot. Weeds 14:285–288

    Article  Google Scholar 

  • Hauser TP (2002) Frost sensitivity of hybrids between wild and cultivated carrots. Cons Genet 3:75–78

    Article  Google Scholar 

  • Hauser TP, Bjørn GK (2001) Hybrids between wild and cultivated carrots in Danish carrot fields. Genet Resour Crop Evol 48:499–506

    Article  Google Scholar 

  • Hauser TP, Shim SI (2007) Survival and flowering of hybrids between cultivated and wild carrots (Daucus carota) in Danish grasslands. Environ Biosaf Res 237–247

    Article  PubMed  Google Scholar 

  • Hauser TP, Bjorn GK, Magnussen L, Shim SI (2004) Hybrids between cultivated and wild carrot: a life history. In: den Nijs HCM, Bartsch D, Sweet J (eds) Introgression from genetically modified plants into wild relatives. CABI Publishing, Wallingford, UK

    Google Scholar 

  • Haygood R, Ives AR, Andow DA (2004) Population genetics of transgene containment. Ecol Lett 7:213–220

    Article  Google Scholar 

  • Holt BR (1972) Effect of arrival time on recruitment, mortality, and reproduction in successional plant populations. Ecology 53(4):668–673

    Article  Google Scholar 

  • Howlett BG, Lankin-Vega GO, Pattermore DE (2015) Native and introduced bee abundances on carrot seed crops in New Zealand. New Zeal Plant Prot 68:373–379

    CAS  Google Scholar 

  • Ijaz S (2010) Plant mitochondrial genome: “a sweet and safe home” for transgene. Afr J Biotechnol 9:9196–9199

    CAS  Google Scholar 

  • Iorizzo M, Senalik DA, Ellison SL, Grzebelus D, Cavagnaro PF, Allender C, Brunet J, Spooner DM, Van Deynze A, Simon PW (2013) Genetic structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae). Am J Bot 100:930–938

    Article  PubMed  Google Scholar 

  • Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, Bowman M, Iovene M, Sanseverino W, Cavagnaro P, Yildiz M (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48(6):657

    Article  CAS  PubMed  Google Scholar 

  • Koul P, Koul AK, Hamal IA (1989) Reproductive biology of wild and cultivated carrot (Daucus carota L.). New Phytol 112(3):437–443

    Article  Google Scholar 

  • Lacey EP (1981) Seed dispersal in wild carrots. Mich Bot 20:15–20

    Google Scholar 

  • Lacey EP (1982) Timing of seed dispersal in Daucus carota. Oikos 39:83–91

    Article  Google Scholar 

  • Lacey EP (1984) Seed mortality in Daucus carota populations: latitudinal effects. Am J Bot 71:1175–1182

    Article  Google Scholar 

  • Lacey EP (1986) The genetic and environmental control of reproductive timing in a short-lived monocarpic species Daucus carota (Umbelliferae). J Ecol 74:73–86

    Article  Google Scholar 

  • Lacey EP (1988) Latitudinal variation in reproductive timing of a short-lived monocarp, Daucus carota (Apiaceae). Ecology 69:220–232

    Article  Google Scholar 

  • Lacey EP, Pace R (1983) Effect of parental flowering and dispersal times on offspring fate in Daucus carota. Oecologia 60:274–278

    Article  PubMed  Google Scholar 

  • Lamborn E, Ollerton J (2000) Experimental assessment of the functional morphology of inflorescences of Daucus carota (Apiaceae): testing the ‘fly catcher effect’. Funct Ecol 14:445–454

    Article  Google Scholar 

  • Magnussen LS, Hauser TP (2007) Hybrids between cultivated and wild carrots in natural populations in Denmark. Heredity 99:185–192

    Article  CAS  PubMed  Google Scholar 

  • Mandel JR, McCauley DE (2015) Pervasive mitochondrial sequence heteroplasmy in natural populations of wild carrot, Daucus carota spp. carota L. PLoS One 10(8):e0136303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mandel JR, McAssey EV, Roland KM, McCauley DE (2012) Mitochondrial gene diversity associated with the atp9 stop codon in natural populations of wild carrot (Daucus carota ssp. carota). J Hered 103:418–425

    Article  CAS  PubMed  Google Scholar 

  • Mandel JR, Ramsey AJ, Iorizzo M, Simon PW (2016) Patterns of gene flow between crop and wild carrot, Daucus carota (Apiaceae) in the United States. PLoS One 11(9):e0161971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manzano P, Malo JE (2006) Extreme long-distance seed dispersal via sheep. Front Ecol Environ 4(5):244–248

    Article  Google Scholar 

  • McCauley DE, Sundby AK, Bailey MF, Welch ME (2007) Inheritance of chloroplast DNA is not strictly maternal in Silene vulgaris (Caryophyllaceae): evidence from experimental crosses and natural populations. Am J Bot 94:1333–1337

    Article  CAS  PubMed  Google Scholar 

  • McCauley DE (2013) Paternal leakage, heteroplasmy, and the evolution of plant mitochondrial genomes. New Phytol 200(4), 966–977

    Article  PubMed  Google Scholar 

  • Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raybould AF, Gray AJ (1994) Will hybrids of genetically modified crops invade natural communities? Trends Ecol Evol 9:85–89

    Article  CAS  PubMed  Google Scholar 

  • Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity 72:132–140

    Article  Google Scholar 

  • Reiker J, Schulz B, Wissemann V, Gemeinholzer B (2015) Does origin always matter? Evaluating the influence of nonlocal seed provenances for ecological restoration purposes in a widespread and outcrossing plant species. Ecol Evol 5(23):5642–5651

    Article  PubMed  PubMed Central  Google Scholar 

  • Rieger MA, Lamond M, Preston C, Powles SB, Roush RT (2002) Pollen-mediated movement of herbicide resistance between commercial canola fields. Science 296(5577):2386–2388

    Article  CAS  PubMed  Google Scholar 

  • Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–185

    Article  Google Scholar 

  • Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:221–228

    Article  PubMed  Google Scholar 

  • Robledo-Arnuncio JJ, Austerlitz F, Smouse PE (2007) POLDISP: a software package for indirect estimation of contemporary pollen dispersal. Mol Ecol Notes 7:763–766

    Article  Google Scholar 

  • Röhr H, Kues U, Stahl U (1998) Organelle DNA of plants and fungi: inheritance and recombination. Prog Bot 60:39–87

    Article  Google Scholar 

  • Ronfort J, Saumitou-Laprade P, Cugen J, Couvet D (1995) Mitochondrial DNA diversity and male sterility in natural populations of Daucus carota ssp. carota. Theor Appl Genet 91:150–159

    Article  CAS  PubMed  Google Scholar 

  • Rong J, Janson S, Umehara M, Ono M, Vrieling K (2010) Historical and contemporary gene dispersal in wild carrot (Daucus carota spp. carota) populations. Ann Bot 106:285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rong J, Xu S, Meirmans PG, Vrieling K (2013) Dissimilarity of contemporary and historical gene flow in wild carrot (Daucus carota) metapopulation under contrasting levels of human disturbance: implications for risk assessment and management of transgene introgression. Ann Bot 112:1361–1370

    Article  PubMed  PubMed Central  Google Scholar 

  • Sears BB (1980) Elimination of plastids during spermatogenesis and fertilization in the plant kingdom. Plasmid 4:233–255

    Article  CAS  PubMed  Google Scholar 

  • Shim SI, Jørgensen RB (2000) Genetic structure in cultivated and wild carrots (Daucus carota L.) revealed by AFLP analysis. Theor Appl Genet 101(1–2):227–233

    Article  CAS  Google Scholar 

  • Small E (1984) Hybridization in the domesticated-weed-wild complex. In: Grant WF (ed) Plant biosystematics. Academic Press, Toronto, Ontario, Canada, pp 195–210

    Chapter  Google Scholar 

  • St. Pierre MS, Bayer RJ (1991) The impact of domestication on the genetic variability in the orange carrot, cultivated Daucus carota ssp. sativus and the genetic homogeneity of various cultivars. Theor Appl Genet 82(2):249–253

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Eguchi I, Kaneko D, Ono M, Kamada H (2005) Evaluation of gene flow and its environmental effects in the field. Plant Biotechnol J 22:497–504

    Article  CAS  Google Scholar 

  • USDA, National Agricultural Statistics Service 2017. United States Government Printing Office, Washington

    Google Scholar 

  • Van Etten ML, Brunet J (2017) Using population matrix models to reduce the spread of wild carrot. Acta Hortic 1153:273–278

    Article  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    Article  CAS  PubMed  Google Scholar 

  • Verkaar HJ, Schenkeveld AJ (1984) On the ecology of short-lived forbs in chalk grasslands—life-history characteristics. New Phytol 98:659–672

    Article  Google Scholar 

  • Verma D, Daniell H (2007) Update on plastid transformation vectors chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westmoreland D, Muntan C (1996) The influence of dark central florets on insect attraction and fruit production in Queen Anne’s Lace (Daucus carota L.). Am Midl Nat 1:122–129

    Article  Google Scholar 

  • Wijnheijmer EHM, Brandenburg WA, Terborg SJ (1989) Interactions between wild and cultivated carrots (Daucus carota L.) in the Netherlands. Euphytica 40:147–154

    Article  Google Scholar 

  • Wilson GA, Rannala G (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Liu Y, Sodmergen (2003) Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant Cell Physiol 44:941–951

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer R. Mandel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandel, J.R., Brunet, J. (2019). Gene Flow in Carrot. In: Simon, P., Iorizzo, M., Grzebelus, D., Baranski, R. (eds) The Carrot Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-03389-7_4

Download citation

Publish with us

Policies and ethics