Skip to main content

Potential Biomarkers for Personalized Radiation Therapy for Patients with Uterine Cervical Cancer

  • Chapter
  • First Online:
Uterine Cervical Cancer

Abstract

Uterine cervical cancer (UCC) is one of the most prevalent malignant neoplasms in the world. UCC develops beyond the stage in situ and is frequently treated by a combination of intracavitary radiation therapy and external beam radiation therapy; 30–40% of patients with similar prognosis factors do not respond equally to a comparable standard treatment. Therefore, the study and identification of prognostic biomarkers and predictive biomarkers, which allow the identification of subpopulations of patients most likely to respond to a given therapy, would be extremely useful in the selection of patients for the development of innovative and effective therapies for locally advanced, metastatic, and refractory uterine cervical cancer. A comparative analysis of UCC in the context of other cancers may reveal that it is relatively smaller number of targeted molecular agents that have been tested. Some studies indicate that there may be a significant association between the response to treatment and the tumor phenotype, characterized by changes in gene, protein, and metabolic expression. This expression of genes and proteins is modulated, some of them considered with possible prognostic value in UCC and in other types of cancer, such as those that we have studied in our work team, IGF1R, IGF-IGF-II, GAPDH, HIF-1 alpha, survivin, GLUT1, CAIX, HKII, hTERT, HPV16 variants. Of these, IGF1R, GAPDH, HIF-1 alpha, GLUT1, and factors such as HPV16 variants and hemoglobin levels will be the subject of this review as potential biomarkers for personalized oncological radiation in the management of UCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Piñeros M, Cendales R, Murillo R, Wiesner C, Tovar S. Pap test coverage and related factors in Colombia, 2005. Rev Salud Publica (Bogota). 2007;9(3):327–41.

    Article  Google Scholar 

  2. Lewis MJ, Council R, Sammons-Posey D. Barriers to breast and cervical cancer screening among New Jersey African Americans and Latinas. N J Med. 2002;99(1–2):27–32.

    PubMed  Google Scholar 

  3. Moreno-Acosta P, Vallard A, Carrillo S, Gamboa O, Romero-Rojas A, Molano M, Acosta J, Mayorga D, Rancoule C, Garcia MA, Cotes Mestre M, Magné N. Biomarkers of resistance to radiation therapy: a prospective study in cervical carcinoma. Radiat Oncol. 2017;12(1):120.

    Article  CAS  Google Scholar 

  4. Moreno-Acosta P, Gamboa O, Sanchez de Gomez M, et al. IGF1R gene expression as a predictive marker of response to ionizing radiation for patients with locally advanced HPV16- positive cervical Cancer. Anticancer Res. 2012;32:4319–26.

    CAS  PubMed  Google Scholar 

  5. Yang J, Yue JB, Liu J, Yu JM. Repopulation of tumor cells during fractionated radiotherapy and detection methods (review). Oncol Lett. 2014;7(6):1755–60.

    Article  Google Scholar 

  6. Huang Z, Mayr NA, Yuh WT, et al. Predicting outcomes in cervical cancer: a kinetic model of tumor regression during radiation therapy. Cancer Res. 2010;70(2):463–70.

    Article  CAS  Google Scholar 

  7. Moreno-Acosta P, Carrillo S, Gamboa O, Romero-Rojas A, Acosta J, Molano M, Balart-Serra J, Cotes M, Rancoule C, Magné N. Novel predictive biomarkers for cervical cancer prognosis. Mol Clin Oncol. 2016;5(6):792–6.

    Article  CAS  Google Scholar 

  8. Niibe Y, Watanabe J, Tsunoda S, et al. Concomitant expression of HER2 and HIF-1alpha is a predictor of poor prognosis in uterine cervical carcinoma treated with concurrent hemoradiotherapy: prospective analysis (KGROG0501). Eur J Gynaecol Oncol. 2010;31(5):491–6.

    CAS  PubMed  Google Scholar 

  9. Noordhuis MG, Eijsink JJ, Roossink F, et al. Prognostic cell biological markers in cervical cancer patients primarily treated with (chemo) radiation: a systematic review. Int J Radiat Oncol Biol Phys. 2011;79(2):325–34.

    Article  CAS  Google Scholar 

  10. Magne N, Chargari C, Deutsch E, et al. Molecular profiling of uterine cervical carcinoma: an overview with a special focus on rationally designed target based anticancer agents. Cancer Metastasis Rev. 2008;27:737–50.

    Article  CAS  Google Scholar 

  11. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervical. Cancer Res. 1996;56:4509–15.

    CAS  PubMed  Google Scholar 

  12. Lloret M, Lara PC, Bordón E, et al. IGF-1R expression in localized cervical carcinoma patients treated by radiochemotherapy. Gynecol Oncol. 2007;106:8–11.

    Article  CAS  Google Scholar 

  13. Ferdousi J, Nagai Y, Asato T, et al. Impact of human papillomavirus genotype on response to treatment and survival in patients receiving radiotherapy for squamous cell carcinoma of the cervix. Exp Ther Med. 2010;1(3):525–30.

    Article  Google Scholar 

  14. Moreno-Acosta P. Expresión del receptor de IGF-I y detección de variantes del virus del papiloma humano en pacientes con carcinomas escamocelualres invasivos de cuello uterino y su posible relación con la respuesta a la radioterapia [tesis Doctoral]. Bogotá (Colombia): Universidad Nacional de Colombia; 2006. 175 p.

    Google Scholar 

  15. IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans. Human Papilomaviruses. Human Papillomavirus (HPV) Infection. Genomic Structure and Properties of Gene Products. 64, 40–43. 1995.

    Google Scholar 

  16. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12.

    Article  CAS  Google Scholar 

  17. Haugland HK, Vukovic V, Pintilie M, Fyles AW, Milosevic M, Hill RP, et al. Expression of hypoxia-inducible factor-1alpha in cervical carcinomas: correlation with tumor oxygenation. Int J Radiat Oncol Biol Phys. 2002;53:854.

    Article  CAS  Google Scholar 

  18. Hutchison GJ, Valentine HR, Loncaster JA, Davidson SE, Hunter RD, Roberts SA, et al. Hypoxia-inducible factor 1alpha expression as an intrinsic marker of hypoxia: correlation with tumor oxygen, pimonidazole measurements, and outcome in locally advanced carcinoma of the cervix. Clin Cancer Res. 2004;10:8405.

    Article  CAS  Google Scholar 

  19. Moreno-Acosta P, Carrillo S, Gamboa O, Acosta Y, Balart-Serra J, Magne N, Melo-Uribe M-A, Romero-Rojas A-E. Expression of the hypoxic and glycolytic markers, CAIX, GLUT-1 and HKII and their association with early treatment response in squamous cell carcinomas of the uterine cervix. Prog Obstet Ginecol. 2013;56(8):404–13.

    Article  Google Scholar 

  20. Moreno-Acosta P, Romero-Rojas A, Carrillo S, Gamboa O, Acosta J, Balart-Serra J, Magne N. GLUT1 and hemoglobin levels: hypoxic markers of treatment response in patients with locally advanced cervical cancer. Mol Cancer Ther. 2013;12(11 Suppl):C39.

    Article  Google Scholar 

  21. Dayan F, Roux D, Brahimi-Horn MC, Pouyssegur J, Mazure NM. The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1alpha. Cancer Res. 2006;66:3688.

    Article  CAS  Google Scholar 

  22. Gatenby RA, Gillies RJ. A microenvironmental model of carcinogenesis. Nat Rev Cancer. 2008;8:56.

    Article  CAS  Google Scholar 

  23. Yang L, Cao Z, Li F, Post DE, Van Meir EG, Zhong H, et al. Tumor specific gene expression using the Survivin promoter is further increased by hypoxia. Gene Ther. 2004;11(15):1215–23.

    Article  CAS  Google Scholar 

  24. Bache M, Holzapfel D, Kappler M, Holzhausen HJ, Taubert H, Dunst J, Hänsgen G. Survivin protein expression and hypoxia in advanced cervical carcinoma of patients treated by radiotherapy. Gynecol Oncol. 2007;104:139–44.

    Article  CAS  Google Scholar 

  25. Mamede M, Higashi T, Kitaichi M, Ishizu K, Ishimori T, Nakamoto Y, et al. [18F] FDG uptake and PCNA, Glut-1, and hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia. 2005;7:369.

    Article  CAS  Google Scholar 

  26. Mendez LE, Manci N, Cantuaria G, Gomez-Marin O, Penalver M, Braunschweiger P, et al. Expression of glucose transporter-1 in cervical cancer and its precursors. Gynecol Oncol. 2002;86:138.

    Article  CAS  Google Scholar 

  27. Loncaster JA, Harris AL, Davidson SE, Logue JP, Hunter RD, Wycoff CC, et al. Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res. 2001;61:6394.

    CAS  PubMed  Google Scholar 

  28. Brahimi-Horn C, Pouyssegur J. The role of the hypoxia-inducible factor in tumor metabolism growth and invasion. Bull Cancer. 2006;93:E73.

    PubMed  Google Scholar 

  29. Miller J, et al. HPV16 E7 protein and hTERT proteins defective for telomere maintenance cooperate to immortalize human keratinocytes. PLoS Pathog. 2014;9:e1003284.

    Article  Google Scholar 

  30. Wellenhofer A, Brustmann H. Expression of human telomerase reverse transcriptase in vulvar intraepithelial neoplasia and squamous cell carcinoma: an immunohistochemical study with survivin and p53. Arch Pathol Lab Med. 2012;136(11):1359–65.

    Article  Google Scholar 

  31. Instituto Nacional de Cancerología, Bogotá D. C Colombia. Cáncer de Cuello Uterino. En: Guías de práctica clínica en enfermedades neoplásicas. 413–428. 2001.

    Google Scholar 

  32. Betancourt Diego Palacio and Carlos Vicente rada Escobar. Anuario Estadístico. “Por el control del Cáncer”. Ministerio de la Protección Social, Instituto Nacional de Cancerología E.S.E. 4. 2007.

    Google Scholar 

  33. Garibaldi C, Jereczek-Fossa BA, Marvaso G, Dicuonzo S, Rojas DP, Cattani F, Starzyńska A, Ciardo D, Surgo A, Leonardi MC, Ricotti R. Recent advances in radiation oncology. Ecancermedicalscience. 2017;11:785.

    Article  Google Scholar 

  34. Carrillo SA. Expresión de CAIX, GLUT-1 y HK II y su posible asociación con cáncer escamocelular invasivo de cuello uterino [tesis de Maestria]. Bogotá (Colombia): Universidad Nacional de Colombia; 2010. 90 p.

    Google Scholar 

  35. Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193–9.

    Article  Google Scholar 

  36. Chatterjee DK, Wolfe T, Lee J, Brown AP, Singh PK, Bhattarai SR, Diagaradjane P, Krishnan S. Convergence of nanotechnology with radiation therapy-insights and implications for clinical translation. Transl Cancer Res. 2013;2(4):256–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Vici P, Mariani L, Pizzuti L, et al. Emerging biological treatments for uterine cervical carcinoma. J Cancer. 2014;5(2):86–97.

    Article  Google Scholar 

  38. Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11(4):239–53.

    Article  CAS  Google Scholar 

  39. Mountzios G, Soultati A, Pectasides D, Dimopoulos MA, Papadimitriou CA. Novel approaches for concurrent irradiation in locally advanced cervical cancer: platinum combinations, non-platinum-containing regimens, and molecular targeted agents. Obstet Gynecol Int. 2013;2013:536765.

    Article  Google Scholar 

  40. Brünner N. What is the difference between “predictive and prognostic biomarkers”? Can you give some examples? Connect. 2009;13:18–9.

    Google Scholar 

  41. Vogt M, Butz K, Dymalla S, Semzow J, Hoppe-Seyler F. Inhibition of bax activity is crucial for the anti-apoptotic function of the human papillomavirus E6 oncoprotein. Oncogene. 2006;25(29):4009–15.

    Article  CAS  Google Scholar 

  42. Lichtig H, Algrisi M, Botzer LE, Abadi T, Verbitzky Y, Jackman A, Tommasino M, Zehbe I, Sherman L. HPV16 E6 natural variants exhibit different activities in functional assays relevant to the carcinogenic potential of E6. Virology. 2006;350(1):216–27.

    Article  CAS  Google Scholar 

  43. Zacapala-Gómez AE, Del Moral-Hernández O, Villegas-Sepúlveda N, et al. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells. Virology. 2016;488:187–95.

    Article  Google Scholar 

  44. Moreno-Acosta P, Vallard A, Molano M, Huertas A, Gamboa Ó, Cotes M, Romero-Rojas A, Rancoule C, Magné N. HPV-16 variants’ impact on uterine cervical cancer response to radiotherapy: a descriptive pilot study. Cancer Radiother. 2017;21(2):104–8. https://doi.org/10.1016/j.canrad.2016.09.018. Epub 2017 Mar 18.

    Article  CAS  PubMed  Google Scholar 

  45. Dunst J, Kuhnt T, Strauss HG, Krause U, Pelz T, Koelbl H, et al. Anemia in cervical cancers: impact on survival, patterns of relapse, and association with hypoxia and angiogenesis. Int J Radiat Oncol Biol Phys. 2003;56:778.

    Article  Google Scholar 

  46. Vaupel P, Thews O, Hoeckel M. Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol. 2001;18:243.

    Article  CAS  Google Scholar 

  47. Mayer A, Hockel M, Vaupel P. Endogenous hypoxia markers: case not proven. Adv Exp Med Biol. 2008;614:127–36.

    Article  CAS  Google Scholar 

  48. Airley RE, Loncaster J, Raleigh JA, Harris AL, Davidson SE, Hunter RD, et al. GLUT-1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: relationship to pimonidazole binding. Int J Cancer. 2003;104:85.

    Article  CAS  Google Scholar 

  49. Lee WY, Huang SC, Hsu KF, Tzeng CC, Shen WL. Roles for hypoxia-regulated genes during cervical carcinogenesis: somatic evolution during the hypoxia-glycolysis-acidosis sequence. Gynecol Oncol. 2008;108:377.

    Article  CAS  Google Scholar 

  50. Kim JW, Kim SJ, Han SM, Paik SY, Hur SY, Kim YW, Lee JM, Namkoong SE. Increased glyceraldehyde-3-phosphate dehydrogenase gene expression in human cervical cancers. Gynecol Oncol. 1998;71:266–9.

    Article  CAS  Google Scholar 

  51. Hansen CN, Ketabi Z, Rosenstierne MW, Palle C, Boesen HC, Norrild B. Expression of CPEB, GAPDH and U6snRNA in cervical and ovarian tissue during cancer development. APMIS. 2009;117:53–9.

    Article  CAS  Google Scholar 

  52. Harima Y, Sawada S, Nagata K, Sougawa M, Ohnishi T. Human papilloma virus (HPV) DNA associated with prognosis of cervical cancer after radiotherapy. Int J Radiat Oncol Biol Phys. 2002;52:1345–51.

    Article  CAS  Google Scholar 

  53. Badaracco G, Savarese A, Micheli A, Rizzo C, Paolini F, Carosi M, et al. Persistence of HPV after radiochemotherapy in locally advanced cervical cancer. Oncol Rep. 2010;23:1093–9.

    PubMed  Google Scholar 

  54. Song YJ, Kim JY, Lee SK, Lim HS, Lim MC, Seo SS, et al. Persistent human papillomavirus DNA is associated with local recurrence after radiotherapy of uterine cervical cancer. Int J Cancer. 2011;129:896–902.

    Article  CAS  Google Scholar 

  55. Bachtiary B, Obermair A, Dreier B, Birner P, Breitenecker G, Knocke TH, et al. Impact of multiple HPV infection on response to treatment and survival in patients receiving radical radiotherapy for cervical cancer. Int J Cancer. 2002;102:237–43.

    Article  CAS  Google Scholar 

  56. Kristensen GB, Karlsen F, Jenkins A, et al. Human papilloma virus has no prognostic significance in cervical carcinoma. Eur J Cancer. 1996;32A:1349–53.

    Article  CAS  Google Scholar 

  57. Van Bommel PF, van den Brule AJ, Helmerhorst TJ, Gallee MP, Gaarenstroom KN, Walboomers JM, et al. HPV DNA presence and HPV genotypes as prognostic factors in low-stage squamous cell cervical cancer. Gynecol Oncol. 1993;48:333–7.

    Article  Google Scholar 

  58. Lai HC, Sun CA, Yu MH, Chen HJ, Liu HS, Chu TY. Favorable clinical outcome of cervical cancers infected with human papilloma virus type 58 and related types. Int J Cancer. 1999;84:553–7.

    Article  CAS  Google Scholar 

  59. Huang LW, Chao SL, Hwang JL. Human papillomavirus-31-related types predict better survival in cervical carcinoma. Cancer. 2004;100:327–34.

    Article  Google Scholar 

  60. Tong SY, Lee YS, Park JS, Namkoong SE. Human papillomavirus genotype as a prognostic factor in carcinoma of the uterine cervix. Int J Gynecol Cancer. 2007;17:1307–13.

    Article  CAS  Google Scholar 

  61. Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518–27.

    Article  Google Scholar 

  62. Moreno-Acosta P, Molano M, Huertas A, Sánchez de Gómez M, Romero A, González M, et al. A non-radioactive PCR-SSCP analysis allows distinguish between HPV 16 European and Asian-American variants in squamous cell carcinomas of the uterine cervix in Colombia. Virus Genes. 2008;37:22–30.

    Article  CAS  Google Scholar 

  63. Huertas-Salgado A, Martin-Gamez DC, Moreno P, Murillo R, Bravo MM, Villa L, et al. E6 molecular of human papillomavirus (HPV) type 16: an updated and unified criterion for clustering and nomenclature. Virology. 2011;410:201–15.

    Article  CAS  Google Scholar 

  64. Burk RD, Harari A, Chen Z. Human papillomavirus genome variants. Virology. 2013;445:232–43. https://doi.org/10.1016/j.virol.2013.07.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hang D, Gao L, Sun M, Liu Y, Ke Y. Functional effects of sequence variations in the E6 and E2 genes of human papilloma virus 16 European and Asian variants. J Med Virol. 2014;86:618–26.

    Article  CAS  Google Scholar 

  66. Kilic S, Cracchiolo B, Gabel M, Haffty B, Omar MO. The relevance of molecular biomarkers in cervical cancer patients treated with radiotherapy. Ann Transl Med. 2015;3(18):261.

    PubMed  PubMed Central  Google Scholar 

  67. Kaneko H, Yu D, Miura M. Overexpression of IGF-I receptor in HeLa cells enhances in vivo radioresponse. Biochem Biophys Res Commun. 2007;363:937–41.

    Article  CAS  Google Scholar 

  68. Moreno-Acosta P, Cotes M, Gamboa O, Magné N. Radiotherapy and complementary treatment for cervical cancer. Int J Gynecol Cancer. 2015;25:1398.

    Article  Google Scholar 

  69. Kast RE, Boockvar JA, Brüning A, et al. A conceptually new treatment approach for relapsed glioblastoma: coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the International Initiative for Accelerated Improvement of Glioblastoma Care. Oncotarget. 2013;4(4):502–30.

    Article  Google Scholar 

  70. Shishodia S. Molecular mechanisms of curcumin action: gene expression. Biofactors. 2013;39(1):37–55.

    Article  CAS  Google Scholar 

  71. Xiao Z, Zhang A, Lin J, et al. Telomerase: a target for therapeutic effects of curcumin and a curcumin derivative in Aβ1-42 insult in vitro. PLoS One. 2014;9:e1d1251.

    Google Scholar 

  72. Abouzeid AH, Patel NR, Rachman IM, Senn S, Torchilin VP. Anti-cancer activity of anti-GLUT1 antibody-targeted polymeric micelles co-loaded with curcumin and doxorubicin. J Drug Target. 2013;21(10):994–1000.

    Article  CAS  Google Scholar 

  73. Gunnink L, Louters L. The mechanism of curcumin inhibition on GluT1. Available at: https://www.calvin.edu/academic/science/summer/2015posters_papers/GunninkPoster.pdf. Accessed 02/01/2016.

  74. Mehta HJ, Patel V, Sadikot RT. Curcumin and lung cancer – a review. Target Oncol. 2014;9(4):295–310.

    Article  Google Scholar 

  75. Higgins GS, Krause M, McKenna WG, Baumann M. Personalized radiation oncology: epidermal growth factor receptor and other receptor tyrosine kinase inhibitors, Mol Rad Oncol. Berlin/Heidelberg: Springer; 2016. p. 107–22.

    Google Scholar 

  76. Abdulkarim B, Sabri S, Deutsch É, Chagraoui H, Maggiorella L, Thierry J, et al. Antiviral agent cidofovir restores p53 function and enhances the radiosensitivity in HPV-associated cancers. Oncogene. 2002;21:2334–46.

    Article  CAS  Google Scholar 

  77. Deberne M, Levy A, Mondini M, Dessen P, Vivet S, Supiramaniam A, et al. The combination of the antiviral agent cidofovir and anti-EGFR antibody cetuximab exerts an anti-proliferative effect on HPV-positive cervical cancer cell lines’ in vitro and in vivo xenografts. Anti-Cancer Drugs. 2013;24:599–608.

    CAS  PubMed  Google Scholar 

  78. Deutsch É, Levy A, Mazeron R, Gazzah A, Angevin EA, Ribrag V, et al. Phase I trial evaluating the antiviral agent cidofovir in combination with chemoradiation in cervical cancer patients: a novel approach to treat HPV-related malignancies? Eur J Cancer. 2014;50:74.

    Article  Google Scholar 

Download references

Acknowledgment

The topic of revision includes a large part of the work we have been doing for several years and to which they contribute Functional Unit of Gynecology Oncology, Oncology Pathology Group, Group Area Radiotherapy Oncology, Unit of Analysis, which are part of the National Institute of Cancerology, Bogotá, Colombia, and the Department of Radiation Oncology, Institute de Cancérologie de la Loire-Lucien Neuwirth, Saint-Priest in Jarez, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Moreno-Acosta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moreno-Acosta, P. et al. (2019). Potential Biomarkers for Personalized Radiation Therapy for Patients with Uterine Cervical Cancer. In: Farghaly, S. (eds) Uterine Cervical Cancer. Springer, Cham. https://doi.org/10.1007/978-3-030-02701-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02701-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02700-1

  • Online ISBN: 978-3-030-02701-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics