Skip to main content

Environmental Nanotechnology: Applications of Nanoparticles for Bioremediation

  • Chapter
  • First Online:
Approaches in Bioremediation

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

The advancement in science and technology contributes directly or indirectly to the increase in waste and toxic materials in the environment. Thus it is required to clean up the contaminants of the environment by eco-friendly, sustainable, and economically adoptable technologies. Present treatment technologies, though efficient, cause several problems which make remediation processes complex. Bioremediation requires long treatment time, and it may not be effective if high contaminant concentrations that are toxic to microorganisms exist. The integration of nanomaterials and bioremediation has great potential to be effective, efficient, and sustainable. Thus use of nanotechnology for bioremediation is a new emerging field, playing an increasingly important role in addressing innovative and effective solutions to a vast range of environmental challenges. The use of nanomaterials for remediation/treatment results is more cost-effective and rapid than current conventional approaches due to their enhanced surface area, transport properties, and sequestration characteristics. Recently nanoscale zero-valent iron (nZVI), carbon nanotubes, and nano-fibers have been used for the remediation of a variety of contaminants including chlorinated compounds, hydrocarbons, organic compounds, and heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andersson M, Osterlund L, Ljungstrom S, Palmqvist A (2002) Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J Phys Chem B 106:10674–10679

    Article  CAS  Google Scholar 

  • Arkas M, Tsiourvas D, Paleos CM (2003) Functional dendrimeric “Nanosponges” for the removal of polycyclic aromatic hydrocarbons from water. Chem Mater 15:2844–2847

    Article  CAS  Google Scholar 

  • Asilturk M, Sayýlkan F, Erdemoglu S, Akarsu M, Sayýlkan H, Erdemoglu M, Arpac E (2006) Characterization of hydrothermally synthesized nano-TiO2 crystallite and the photocatalytic degradation of Rhodamine B. J Hazard Mater B 129:164–170

    Article  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker S, Satish S (2012) Endophytes: toward a vision in synthesis of nanoparticles for future therapeutic agents. Int J Bio-Inorg Hybd Nanomater 1:1–11

    Google Scholar 

  • Bargar JR, Bernier-Latmani R, Giammar DE, Tebo BM (2008) Biogenic uraninite nanoparticles and their importance for uranium remediation. Elements 4:407–412

    Article  Google Scholar 

  • Bharati B, Sonkar AK, Singh N, Dash D, Chandana R (2017) Enhanced photocatalytic degradation of dyes under sunlight using biocompatible TiO2 nanoparticles. Mater Res Express 4(8):085503

    Article  Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Article  CAS  Google Scholar 

  • Bina B, Pourzamani H, Rashidi A, Amin MM (2012) Ethylbenzene removal by carbon nanotubes from aqueous solution. J Environ Sci Public Health 2012:817187. https://doi.org/10.1155/2012/817187

    Article  CAS  Google Scholar 

  • Buhleier E, Wehner W, Vogtle F (1978) Cascade and “nonskid chain- like” syntheses of molecular cavity topologies. Synthesis 2:155–158

    Article  Google Scholar 

  • Castillo VA, Barakat MA, Ramadan MH, Woodcock HL, Kuhn JN (2014) Metal ion remediation by polyamidoamine dendrimers: a comparison of metal ion, oxidation state, and titania immobilization. Int J Environ Sci Technol 11:1497–1502

    Article  CAS  Google Scholar 

  • Chen J, Liu M, Zhang L, Zhang J, Jin L (2003) Application of nano TiO2 towards polluted water treatment combined with electro-photochemical method. Water Res 37:3815–3820

    Article  CAS  PubMed  Google Scholar 

  • Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41:1307–1311

    Article  CAS  PubMed  Google Scholar 

  • Cundy AB, Hopkinson L, Whitby RLD (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400:42–51

    Article  CAS  PubMed  Google Scholar 

  • Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32:49–73

    Article  CAS  PubMed  Google Scholar 

  • Diallo MS, Balogh L, Shafagati A, Johnson JH, Goddard WA, Tomalia DA (1999) Poly(amidoamine) Dendrimers: A New Class of High Capacity Chelating Agents for Cu(II) Ions. Environmental Science & Technology 33 (5):820–824

    Google Scholar 

  • Dimitrov D (2006) Interactions of antibody conjugated nanoparticles with biological surfaces. Colloids Surf A 8:282–283

    Google Scholar 

  • Feitz AJ, Joo SH, Guana J, Suna Q, Sedlak DL, Waite TD (2005) Oxidative transformation of contaminants using colloidal zerovalent iron. Colloids Surf A 265:88–94

    Article  CAS  Google Scholar 

  • Feng J, Lim TT (2005) Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: comparison with commercial micro-scale Fe and Zn. Chemosphere 59:1267–1277

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Hu X, Yue PL, Zhu HY, Lu GQ (2003) Degradation of azo-dye orange II by a photoassisted Fenton reaction using a novel composite of iron oxide and silicate nanoparticles as a catalyst. Ind Eng Chem Res 42:2058–2066

    Article  CAS  Google Scholar 

  • Friedrich KA, Henglein F, Stimming U, Unkauf W (1998) Investigations of Pt particles on gold substrates by IR spectroscopy. Colloids Surf A 134:193–206

    Article  CAS  Google Scholar 

  • Grieger KD, Fjordøge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) Environmental benefits and risks of zero-valent iron particles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118:165–183

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Guo X, Yu D, Hu J (2012) Application research in water treatment of PAMAM dendrimer. Chem Ind Eng Prog 31:671–675

    CAS  Google Scholar 

  • Hua S, Gong JL, Zeng GM, Yao FB, Guo M, Ou XM (2017) Remediation of organochlorine pesticides contaminated lake sediment using activated carbon and carbon nanotubes. Chemosphere 77:65–76

    Article  Google Scholar 

  • Ilisz I, Dombi A, Mogyorósi K, Dékány I (2004) Photocataltyic water treatment with different TiO2 nanoparticles and hydrophilic/hydrophobic. Colloids Surf A Physicochem Eng Asp 230:89–97

    Article  Google Scholar 

  • Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco- friendly approach. J Nanomed Nanotechnol 4:165–171

    Article  Google Scholar 

  • Johnson A, Merilis G, Hasting J, Palmer EM, Fitts JP, Chidambaram D (2013) Reductive degradation of organic compounds using microbial nanotechnology. J Electrochem Soc 160:G27–G31

    Article  CAS  Google Scholar 

  • Joo SH, Zhao D (2007) Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere 70:418–425

    Article  PubMed  Google Scholar 

  • Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Technol 86:682–689. https://doi.org/10.1007/s10971-018-4666-2

    Article  CAS  Google Scholar 

  • Kanatzidis MG, Poeppelmeier KR (2007) Report from the third workshop on future directions of solid-state chemistry: the status of solid-state chemistry and its impact in the physical sciences. Prog Solid State Chem 36:1–133

    Article  Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298

    Article  CAS  PubMed  Google Scholar 

  • Kanel SR, Greneche JM, Choi H (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050

    Article  CAS  PubMed  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1823–1831

    Article  Google Scholar 

  • Kavitha KS, Syed B, Rakshith D, Kavitha HU, Yashwantha Rao HC, Harini BP, Satish S (2013) Plants as green source towards synthesis of nanoparticles. Int Res J Bio Sci 2:66–76

    Google Scholar 

  • Kharissova OV, Dias Rasika HV, Kharisov BI, Pérez BO, Pérez Jiménez VM (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31:240–248

    Article  CAS  PubMed  Google Scholar 

  • Kshitij CJ, Zhuonan L, Hema V, Mallikarjuna N, Sharmila MK, Mesfin T (2016) Carbon nanotube based groundwater remediation: the case of trichloroethylene. Molecules 21:953–967

    Article  Google Scholar 

  • Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42:4927–4933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XQ, Zhang WX (2007) Iron nanoparticles: the core shell structure and unique properties for Ni(II) sequestration. Langmuir 22:4638–4642

    Article  Google Scholar 

  • Li YH, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2002) Lead adsorption on carbon nanotubes. Chem Phy Lett 357:263–266

    Article  CAS  Google Scholar 

  • Li YH, Dinga J, Luanb Z, Dia Z, Zhua Y, Xua C, Wu D, Wei B (2003a) Competitive adsorption of Pb2+ Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792

    Article  CAS  Google Scholar 

  • Li YH, Wang S, Luan Z, Ding J, Xu C, Wu D (2003b) Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41:1057–1062

    Article  CAS  Google Scholar 

  • Li YH, Di Z, Ding J, Wu D, Luan Z, Zhu Y (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res 39:605–609

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liu F, Xia B (2010) Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J Hazard Mater 177:876–880

    Article  CAS  PubMed  Google Scholar 

  • Lien HL, Zhang WX (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids Surf A Physicochem Eng Asp 191:97–105

    Google Scholar 

  • Lin DH, Xing BS (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Poll 150:243–250

    Article  CAS  Google Scholar 

  • Liou YH, Lo SL, Lin CJ, Hu CY, Kuan WH, Weng SC (2005) Methods for accelerating nitrate reduction using zerovalent iron at near-neutral pH: effects of H2-reducing pretreatment and copper deposition. Environ Sci Technol 39:9643–9648

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Chung YL, Chang KF (2005) Adsorption of trihalomethanes from water with carbon nanotubes. Water Res 39:1183–1189

    Article  CAS  PubMed  Google Scholar 

  • Machado S, Pinto SL, Grosso JP, Nouws HPA, Albergaria JT, Delerue-Matos C (2013) Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci Total Environ 445:1–8

    Article  PubMed  Google Scholar 

  • Makarova OV, Rajh T, Thurnauer MC, Martin A, Kemme PA, Cropek D (2000) Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene. Environ Sci Technol 34:4797–4803

    Article  CAS  Google Scholar 

  • Mansoori GA, Rohani-Bastami T, Ahmadpour A, Eshaghi Z (2008) Environmental application of nanotechnology. Annu Rev Nano Res 2:1–73

    Article  Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    Article  CAS  PubMed  Google Scholar 

  • Newkome GR, Yao ZQ, Baker GR, Gupta VK (1985) Cascade molecules: a new approach to micelles. J Org Chem 50:2003–2004

    Article  CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives 113 (7):823–839

    Google Scholar 

  • Paek SM, Jung H, Lee YJ, Park M, Hwang SJ, Choy JH (2006) Exfoliation and reassembling route to mesoporous titania nanohybrids. Chem Mater 18:1134–1140

    Article  CAS  Google Scholar 

  • Paknikar KM, Nagpal V, Pethkar AV, Rajwade JM (2005) Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Technol Adv Mater 6:370–374

    Article  CAS  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 2014:963961. https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R (2017) Mycoremediation and environmental sustainability, vol 1. Springer International Publishing, Cham. (ISBN 978-3-319-68957-9) https://link.springer.com/book/10.1007/978-3-319-68957-9

    Book  Google Scholar 

  • Prasad R (2018) Mycoremediation and environmental sustainability, vol 2. Springer International Publishing, Cham. (ISBN 978-3-319-77386-5). https://www.springer.com/us/book/9783319773858

    Book  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Qiang Y, Sharma A, Paszczynski A, Meyer D (2007) Conjugates of magnetic nanoparticle-enzyme for bioremediation. Proc 2007 NSTI Nanotechnol Conf Trade Show 4:656–659

    CAS  Google Scholar 

  • Rajan S (2011) Nanotechnology in groundwater remediation. Int J Environ Sci Dev 2:182–187

    Article  Google Scholar 

  • Ralph T, Yang G (2003) Adsorbents: fundamentals and applications. Wiley, New Jersey

    Google Scholar 

  • Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solutions by carbon nanotubes: a review. Sep Purif Technol 58:224–231

    Article  CAS  Google Scholar 

  • Rebecca MT, Michele LP, Amy MB (2015) Effect of dendrimeric composition on the removal of pyrene from water. SpringerPlus 4:511–522

    Article  Google Scholar 

  • Richard F (1960) There’s plenty of room at the bottom. California Institute of Technology. Caltech Eng Sci 23:22–36

    Google Scholar 

  • Roco MC (2005) The emergence and policy implications of converging new technologies integrated from the nanoscale. J Nanopart Res 7:129–143

    Article  Google Scholar 

  • Ruffini-Castiglione M, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Article  Google Scholar 

  • Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26:7587–7595

    Article  CAS  PubMed  Google Scholar 

  • Sayles GD, You G, Wang M, Kupferle MJ (1997) DDT, DDD, and DDE dechlorination by zero-valent iron. Environ Sci Technol 31:3448–3454

    Article  CAS  Google Scholar 

  • Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147

    Article  CAS  Google Scholar 

  • Sharma CS, Sarkar S, Periyakaruppan A, Barr J, Wise K, Thomas R (2007) Single-walled carbon nanotubes induces oxidative stress in rat lungcepithelial cells. J Nanosci Nanotechnol 7:2466–2472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade BA (2014) Microbial synthesis of gold nanoparticles: Current status and future prospects. Advances in Colloid and Interface Science 209:40–48

    Google Scholar 

  • Stathatos E, Tsiourvas D, Lianos P (1999) Titanium dioxide films made from reverse micelles and their use for photo catalytic degradation of adsorbed dyes. Colloids Surf A Physicochem Eng Asp 149:49–56

    Article  CAS  Google Scholar 

  • Thatai S, Khurana P, Boken J (2014) Nanoparticles and core–shell nanocomposite based new generation water remediation materials and analytical techniques: a review. J Microchem 116:62–76

    Article  CAS  Google Scholar 

  • Thomas RT, Nair V, Sandhyarani N (2013) TiO2 nanoparticles assisted solid phase photocatalytic degradation of polythene film: a mechanistic investigation. Colloids Surf A 422:1–9

    Article  CAS  Google Scholar 

  • Tomalia DA (1994) Starburst/Cascade Dendrimers: Fundamental building blocks for a new nanoscopic chemistry set. Advanced Materials 6 (7-8):529–539

    Google Scholar 

  • Tosco T, Papini MP, Viggi CC, Sethi R (2014) Nanoscale zero valent iron particles for groundwater remediation: a review. J Clean Prod 77:10–21

    Article  CAS  Google Scholar 

  • Tungittiplakorn W, Cohen C, Lion LW (2005) Engineered Polymeric Nanoparticles for Bioremediation of Hydrophobic Contaminants. Environmental Science & Technology 39 (5):1354–1358

    Google Scholar 

  • Undre SB, Singh M, Kale RK (2013a) Interaction behaviour of trimesoyl chloride derived 1st tier dendrimers determined with structural and physicochemical properties required for drug designing. J Mol Liq 182:106–120

    Article  CAS  Google Scholar 

  • Undre SB, Singh M, Kale RK, Rizwan M (2013b) Silibinin binding and release activities moderated by interstices of trimesoyl, tridimethyl, and tridiethyl malonate first-tier dendrimers. J Appl Polymer Sci 130:3537–3554

    Article  CAS  Google Scholar 

  • Von der Kammer F, Ferguson P, Holden P, Masion A, Rogers K, Klaine S, Koelmans A, Horne N, Unrine J (2012) Analysis of nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ Toxicol Chem 31:32–49

    Google Scholar 

  • Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156

    Google Scholar 

  • Watlington K (2005) U.S. Environmental Protection Agency. www.epa.gov www.clu-in.org

  • Xiong Z, Zhao D, Pan G (2007) Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles. Water Res 41:3497–3505

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Bhattacharyya SD (2005) Membrane based bimetallic nanoparticles for environmental remediation: synthesis and reactive properties. Environ Prog 24:358–366

    Article  CAS  Google Scholar 

  • Yan W, Herzing AA, Li XQ, Kiely CJ, Zhang WX (2010) Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle ageing and reactivity. Environ Sci Technol 44:4288–4294

    Article  CAS  PubMed  Google Scholar 

  • Yu JG, Zhao XH, Yang H, Chen XH, Yang Q, Yu LY, Jiang JH, Chen XQ (2014) Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci Total Environ 483:241–251

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhandari, G. (2018). Environmental Nanotechnology: Applications of Nanoparticles for Bioremediation. In: Prasad, R., Aranda, E. (eds) Approaches in Bioremediation. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02369-0_13

Download citation

Publish with us

Policies and ethics