Skip to main content

Breeding Cold-Tolerant Crops

  • Chapter
  • First Online:
Cold Tolerance in Plants

Abstract

Low-temperature stress is considered as the major abiotic constraint limiting plant’s growth and the potential land cultivation. Crop adaptation to limiting temperature is thus an important breeding objective because it determines yield stability in environment-friendly cultivation practices. Conventional breeding methods had limited success in improving the cold tolerance of important crop plants because of the complexity of stress tolerance traits, low genetic variance, and lack of efficient selection criteria. The knowledge of physiology, of genetics, and of the DNA technology has improved substantially nowadays, and these advancements will allow the breeder to predict the breeding value of best genotypes by using physiology, genetics, and molecular information. The perspective for selecting more effectively cold-tolerant crops will involve efficient genotyping, reliable phenotyping and envirotyping, and adequate statistical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andaya VC, Mackill DJ (2003) Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J Exp Bot 54(392):2579–2585

    Article  CAS  PubMed  Google Scholar 

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends in Plant Science 8 (11):554–560

    Article  CAS  PubMed  Google Scholar 

  • Arief VN, DeLacy IH, Crossa J, Payne T, Singh R, Braun HJ, Tian T, Basford KE, Dieters MJ (2015) Evaluating testing strategies for plant breeding field trials: redesigning a CIMMYT international wheat nursery. Crop Sci 55(1):164–177

    Article  Google Scholar 

  • Arora R (2018) Mechanism of freeze-thaw injury and recovery: A cool retrospective and warming up to new ideas. Plant Sci 270:301–313

    Article  CAS  PubMed  Google Scholar 

  • Assefa Y, Prasad PVV, Carter P, Hinds M, Bhalla G, Schon R, Jeschke M, Paszkiewicz S, Ciampitti IA (2017) A new insight into corn yield: trends from 1987 through 2015. Crop Sci 57(5):2799–2811

    Article  Google Scholar 

  • Atlin GN, Cairns JE, Das B (2017) Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob Food Sec 12:31–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai YL, Sunarti S, Kissoudis C, Visser RGF, van der Linden CG (2018) The role of tomato WRKY genes in plant responses to combined abiotic and biotic stresses. Front Plant Sci 9:801

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Roychoudhury A (2018) Strigolactones: multi-level regulation of biosynthesis and diverse responses in plant abiotic stresses. Acta Physiol Plant 40(5):86

    Article  CAS  Google Scholar 

  • Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T (2012) Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet 125(7):1473–1485

    Article  PubMed  Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for Genomewide Selection for Quantitative Traits inMaize. Crop Science 47(3):1082

    Article  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48(5):1649–1664

    Article  Google Scholar 

  • Bernardo R (2010) Breeding for quantitative traits in plants. Stemma Press, Woodbury

    Google Scholar 

  • Bernardo R (2016a) Bandwagons I, too, have known. Theor Appl Genet 129(12):2323–2332

    Article  PubMed  Google Scholar 

  • Bernardo R (2016b) Genomewide predictions for backcrossing a quantitative trait from an exotic to an adapted line. Crop Sci 56(3):1067–1075

    Article  CAS  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloomfield JA, Rose TJ, King GJ (2014) Sustainable harvest: managing plasticity for resilient crops. Plant Biotechnol J 12(5):517–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradshaw JE (2017) Plant breeding: past, present and future. Euphytica 213(3):60

    Article  CAS  Google Scholar 

  • Braun HJ, Rajaram S, vanGinkel M (1996) CIMMYT's approach to breeding for wide adaptation. Euphytica 92(1–2):175–183

    Article  Google Scholar 

  • Brenner EA, Beavis WD, Andersen JR, Lübberstedt T (2013) Prospects and limitations fordevelopment and application of functional markers in plants. In Diagnostics in plant breeding,edited by Lübberstedt, T and R K Varshney, 329–346. Dordrecht: Springer

    Chapter  Google Scholar 

  • Campbell BM, Thornton P, Zougmore R, van Asten P, Lipper L (2014) Sustainable intensification: what is its role in climate smart agriculture? Curr Opin Environ Sustain 8:39–43

    Article  Google Scholar 

  • Canas RA, Yesbergenova-Cuny Z, Simons M, Chardon F, Armengaud P, Quillere I, Cukier C, Gibon Y, Limami AM, Nicolas S, Brule L, Lea PJ, Maranas CD, Hirel B (2017) Exploiting the genetic diversity of maize using a combined metabolomics, enzyme activity profiling, and metabolic modeling approach to link leaf physiology to kernel yield. Plant Cell 29(5):919–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castonguay Y, Michaud R, Nadeau P, Bertrand A (2009) An indoor screening method for improvement of freezing tolerance in alfalfa. Crop Sci 49(3):809–818

    Article  Google Scholar 

  • Cattivelli L (2011) More cold tolerant plants for a warmer world. Plant Sci 180(1):1–2

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55(395):225–236

    Article  CAS  PubMed  Google Scholar 

  • Cooper M, Messina CD, Podlich D, Totir LR, Baumgarten A, Hausmann NJ, Wright D, Graham G (2014) Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop Pasture Sci 65(4):311–336

    Article  CAS  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Crespo-Herrera LA, Crossa J, Huerta-Espino J, Autrique E, Mondal S, Velu G, Vargas M, Braun HJ, Singh RP (2017) Genetic yield gains in CIMMYT’s international elite spring wheat yield trials by modeling the genotype x environment interaction. Crop Sci 57(2):789–801

    Article  PubMed  PubMed Central  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D,Gustavo de los Campos, Burgueño J, Juan M. González-Camacho, Pérez-Elizalde S,Yoseph Beyene, Susanne Dreisigacker, Ravi Singh, Xuecai Zhang, Manje Gowda, Manish Roorkiwal, Jessica Rutkoski, Rajeev K. Varshney (2017) Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends in Plant Sci 22 (11):961–975

    Google Scholar 

  • De Santis A, Landi P, Genchi G (1999) Changes of mitochondrial properties in maize seedlings associated with selection for germination at low temperature. Fatty acid composition, cytochrome c oxidase, and adenine nucleotide translocase activities. Plant Physiol 119(2):743–754

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhillon T, Pearce SP, Stockinger EJ, Distelfeld A, Li CX, Knox AK, Vashegyi I, Vagujfalvi A, Galiba G, Dubcovsky J (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol 153(4):1846–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolferus R (2014) To grow or not to grow: a stressful decision for plants. Plant Sci 229:247–261

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Van den Broeck L, Inze D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23(4):311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi S, Sahrawat K, Upadhyaya H, Ortiz R (2013) Food, nutrition and agrobiodiversity under global climate change. In: Sparks DL (ed) Advances in agronomy, vol 120. Advances in Agronomy, San Diego, pp 1–128

    Google Scholar 

  • Dwivedi SL, Ceccarelli S, Blair MW, Upadhyaya HD, Are AK, Ortiz R (2016) Lancrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci 21(1):31–42

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi SL, Scheben A, Edwards D, Spillane C, Ortiz R (2017) Assessing and exploiting functional diversity in germplasm pools to enhance abiotic stress adaptation and yield in cereals and food legumes. Front Plant Sci 8:1461

    Article  PubMed  PubMed Central  Google Scholar 

  • Eccel E, Rea R, Caffarra A, Crisci A (2009) Risk of spring frost to apple production under future climate scenarios: the role of phenological acclimation. Int J Biometeorol 53(3):273–286

    Article  PubMed  Google Scholar 

  • Falloon P, Betts R (2010) Climate impacts on European agriculture and water management in the context of adaptation and mitigation-the importance of an integrated approach. Sci Total Environ 408(23):5667–5687

    Article  CAS  PubMed  Google Scholar 

  • Feldman M, Levy AA (2009) Genome evolution in allopolyploid wheat-a revolutionary reprogramming followed by gradual changes. J Genet Genomics 36(9):511–518

    Article  CAS  PubMed  Google Scholar 

  • Fischer RA, Edmeades GO (2010) Breeding and cereal yield progress. Crop Sci 50(2):S85–S98

    Article  Google Scholar 

  • Foolad MR, Lin GY (2001) Genetic analysis of cold tolerance during vegetative growth in tomato, Lycopersicon esculentum Mill. Euphytica 122(1):105–111

    Article  Google Scholar 

  • Fracheboud Y, Jompuk C, Ribaut JM, Stamp P, Leipner J (2004) Genetic analysis of cold-tolerance of photosynthesis in maize. Plant Mol Biol 56(2):241–253

    Article  CAS  PubMed  Google Scholar 

  • Francia E, Barabaschi D, Tondelli A, Laido G, Rizza F, Stanca AM, Busconi M, Fogher C, Stockinger EJ, Pecchioni N (2007) Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet 115(8):1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Toth B, Hayes PM, Skinner JS, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) x ‘Tremois’ (spring) barley map. Theor Appl Genet 108(4):670–680

    Article  CAS  PubMed  Google Scholar 

  • Frascaroli E, Landi P (2013) Divergent selection in a maize population for germination at low temperature in controlled environment: study of the direct response, of the trait inheritance and of correlated responses in the field. Theor Appl Genet 126(3):733–746

    Article  PubMed  Google Scholar 

  • Frascaroli E, Landi P (2016) Cold tolerance in field conditions, its inheritance, agronomic performance and genetic structure of maize lines divergently selected for germination at low temperature. Euphytica 209(3):771–788

    Article  Google Scholar 

  • Frascaroli E, Landi P (2018) Signatures of divergent selection for cold tolerance in maize. Euphytica 214(5):80

    Article  CAS  Google Scholar 

  • Frei OM (2000) Changes in yield physiology of corn as a result of breeding in northern Europe. Maydica 45(3):173–183

    Google Scholar 

  • Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, Bloomer P, Burlingame B, Dawkins M, Dolan L, Fraser D, Herrero M, Hoffmann I, Smith P, Thornton PK, Toulmin C, Vermeulen SJ, Godfray HCJ (2013) Sustainable intensification in agriculture: premises and policies. Science 341(6141):33–34

    Article  CAS  PubMed  Google Scholar 

  • Gorjanc G, Gaynor RC, Hickey JM (2018) Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection. Theor Appl Genet 131:1953

    Article  PubMed Central  PubMed  Google Scholar 

  • Guo Z, Chen D, Schnurbusch T (2018) Plant and floret growth at distinct developmental stages during the stem elongation phase in wheat. Front Plant Sci 9:330

    Article  PubMed  PubMed Central  Google Scholar 

  • Haak DC, Fukao T, Grene R, Hua Z, Ivanov R, Perrella G, Li S (2017) Multilevel regulation of abiotic stress responses in plants. Front Plant Sci 8:1564

    Article  PubMed  PubMed Central  Google Scholar 

  • Heffner EL, Lorenz , Jean-Luc Jannink, Mark E. Sorrells, (2010) Plant Breeding with Genomic Selection: Gain per Unit Time and Cost. Crop Science 50 (5):1681

    Article  Google Scholar 

  • Hensleigh PF, Blake TK, Welty LE (1992) Natural-selection on winter barley composite cross-XXVI affects winter survival and associated traits. Crop Sci 32(1):57–62

    Article  Google Scholar 

  • Hossain MA, Li ZG, Hoque TS, Burritt DJ, Fujita M, Munne-Bosch S (2018) Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma 255(1):399–412

    Article  CAS  PubMed  Google Scholar 

  • Hund A, Frascaroli E, Leipner J, Jompuk C, Stamp P, Fracheboud Y (2005) Cold tolerance of the photosynthetic apparatus: pleiotropic relationship between photosynthetic performance and specific leaf area of maize seedlings. Mol Breed 16(4):321–331

    Article  CAS  Google Scholar 

  • Huner NPA, Dahal K, Kurepin LV, Savitch L, Singh J, Ivanov AG, Kane K, Sarhan F (2014) Potential for increased photosynthetic performance and crop productivity in response to climate change: role of CBFs and gibberellic acid. Front Chem 2:18

    PubMed  PubMed Central  Google Scholar 

  • Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men SN, Wang LC (2018) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Iraba A, Castonguay Y, Bertrand A, Floyd DJ, Cloutier J, Belzile F (2013) Characterization of populations of turf-type perennial ryegrass recurrently selected for superior freezing tolerance. Crop Sci 53(5):2225–2238

    Article  Google Scholar 

  • Jermstad KD, Bassoni DL, Wheeler NC, Anekonda TS, Aitken SN, Adams WT, Neale DB (2001) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. II. Spring and fall cold-hardiness. Theor Appl Genet 102(8):1152–1158

    Article  CAS  Google Scholar 

  • Jha UC, Bohra A, Jha R (2017) Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. Plant Cell Rep 36(1):1

    Article  CAS  PubMed  Google Scholar 

  • Josephs EB (2018) Determining the evolutionary forces shaping G*E. New Phytol 219(1):31–36

    Article  PubMed  Google Scholar 

  • Junker A, Muraya MM, Weigelt-Fischer K, Arana-Ceballos F, Klukas C, Melchinger AE, Meyer RC, Riewe D, Altmann T (2015) Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems. Front Plant Sci 5:770

    Article  PubMed  PubMed Central  Google Scholar 

  • Korner C (2016) Plant adaptation to cold climates. F1000Research 5:F1000

    Article  PubMed  PubMed Central  Google Scholar 

  • Korner C, Basler D, Hoch G, Kollas C, Lenz A, Randin CF, Vitasse Y, Zimmermann NE (2016) Where, why and how? Explaining the low-temperature range limits of temperate tree species. J Ecol 104(4):1076–1088

    Article  CAS  Google Scholar 

  • Kusmec A, Srinivasan S, Nettleton D, Schnable PS (2017) Distinct genetic architectures for phenotype means and plasticities in Zea mays. Nat Plants 3(9):715–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lado B, Gonzalez Barrios P, Quincke M, Silva P, Gutierrez L (2016) Modeling genotype x environment interaction for genomic selection with unbalanced data from a wheat breeding program. Crop Sci 56(5):2165–2179

    Article  Google Scholar 

  • Landi P, Frascaroli E, Lovato A (1992) Divergent full-sib recurrent selection for germination at low-temperature in a maize population. Euphytica 64(1–2):21–29

    Google Scholar 

  • Li X, Guo T, Mu Q, Li X, Yu J (2018a) Genomic and environmental determinants and their interplay underlying phenotypic plasticity. Proc Natl Acad Sci U S A 115(26):6679–6684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X-l, Yang X, Hu Y-x, Yu X-d, Li Q-l (2014) A novel NAC transcription factor from Suaeda liaotungensis K. enhanced transgenic Arabidopsis drought, salt, and cold stress tolerance. Plant Cell Rep 33(5):767–778

    Article  CAS  PubMed  Google Scholar 

  • Li XH, Wang GH, Fu JJ, Li L, Jia GY, Ren LS, Lubberstedt T, Wang GY, Wang JH, Gu RL (2018b) QTL mapping in three connected populations reveals a set of consensus genomic regions for low temperature germination ability in Zea mays L. Front Plant Sci 9:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Ly D, Huet S, Gauffreteau A, Rincent R, Touzy G, Mini A, Jannink JL, Cormier F, Paux E, Lafarge S, Le Gouis J, Charmet G (2018) Whole-genome prediction of reaction norms to environmental stress in bread wheat (Triticum aestivum L.) by genomic random regression. Field Crop Res 216:32–41

    Article  Google Scholar 

  • Makumburage GB, Richbourg HL, LaTorre KD, Capps A, Chen C, Stapleton AE (2013) Genotype to phenotype maps: multiple input abiotic signals combine to produce growth effects via attenuating signaling interactions in maize. G3-Genes Genomes Genet 3(12):2195–2204

    Google Scholar 

  • Mansouri-Far C, Sanavy S, Saberali SF (2010) Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions. Agric Water Manag 97(1):12–22

    Article  Google Scholar 

  • Marais DLD, Hernandez KM, Juenger TE (2013) Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment. Annu Rev Ecol Evol Syst 44(44):5−+

    Article  Google Scholar 

  • Marla SR, Shiva S, Welti R, Liu SZ, Burke JJ, Morris GP (2017) Comparative transcriptome and lipidome analyses reveal molecular chilling responses in chilling-tolerant sorghums. Plant Genome 10(3):16

    Article  Google Scholar 

  • Meng LJ, Lin XY, Wang JM, Chen K, Cui YR, Xu JL, Li ZK (2013) Simultaneous improvement in cold tolerance and yield of temperate japonica rice (Oryza sativa L.) by introgression breeding. Plant Breed 132(6):604–612

    Article  CAS  Google Scholar 

  • Meuwissen TH, Hayes EBJ, ME Goddard (2001) Prediction of total genetic valueusing genome-wide dense marker maps. Genetics 157 (4):1819–1829

    Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16(4):237–251

    Article  CAS  PubMed  Google Scholar 

  • Montesinos-López OA, Montesinos-López A, Crossa J, Montesinos-López JC, Mota-Sanchez D, Estrada-González F, Gillberg J, Singh R, Mondal S, Juliana P (2018) Prediction of multiple-trait and multiple-environment genomic data using recommender systems. G3: Genes, Genomes, Genetics 8(1):131–147

    Google Scholar 

  • Mueller D, Schopp P, Melchinger AE (2018) Selection on expected maximum haploid breeding values can increase genetic gain in recurrent genomic selection. G3-Genes Genomes Genet 8(4):1173–1181

    Google Scholar 

  • Mustafavi SH, Badi HN, Sekara A, Mehrafarin A, Janda T, Ghorbanpour M, Rafiee H (2018) Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiol Plant 40(6):102

    Article  CAS  Google Scholar 

  • Naithani S, Preece J, D'Eustachio P, Gupta P, Amarasinghe V, Dharmawardhana PD, Wu G, Fabregat A, Elser JL, Weiser J, Keays M, Fuentes AM-P, Petryszak R, Stein LD, Ware D, Jaiswal P (2017) Plant reactome: a resource for plant pathways and comparative analysis. Nucleic Acids Res 45(D1):D1029–D1039

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Nemali KS, Bonin C, Dohleman FG, Stephens M, Reeves WR, Nelson DE, Castiglioni P, Whitsel JE, Sammons B, Silady RA, Anstrom D, Sharp RE, Patharkar OR, Clay D, Coffin M, Nemeth MA, Leibman ME, Luethy M, Lawson M (2015) Physiological responses related to increased grain yield under drought in the first biotechnology-derived drought-tolerant maize. Plant Cell Environ 38(9):1866–1880

    Article  PubMed  Google Scholar 

  • Obata T, Witt S, Lisec J, Palacios-Rojas N, Florez-Sarasa I, Yousfi S, Araus JL, Cairns JE, Fernie AR (2015) Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol 169(4):2665–2683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olesen JE, Borgesen CD, Elsgaard L, Palosuo T, Rotter RP, Skjelvag AO, Peltonen-Sainio P, Borjesson T, Trnka M, Ewert F, Siebert S, Brisson N, Eitzinger J, van Asselt ED, Oberforster M, van der Fels-Klerx HJ (2012) Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29(10):1527–1542

    Article  CAS  PubMed  Google Scholar 

  • Olesen JE, Trnka M, Kersebaum KC, Skjelvag AO, Seguin B, Peltonen-Sainio P, Rossi F, Kozyra J, Micale F (2011) Impacts and adaptation of European crop production systems to climate change. Eur J Agron 34(2):96–112

    Article  Google Scholar 

  • Paleari L, Movedi E, Cappelli G, Wilson LT, Confalonieri R (2017) Surfing parameter hyperspaces under climate change scenarios to design future rice ideotypes. Glob Chang Biol 23(11):4651–4662

    Article  PubMed  Google Scholar 

  • Presterl T, Ouzunova M, Schmidt W, Moller EM, Rober FK, Knaak C, Ernst K, Westhoff P, Geiger HH (2007) Quantitative trait loci for early plant vigour of maize grown in chilly environments. Theor Appl Genet 114(6):1059–1070

    Article  PubMed  Google Scholar 

  • Rapacz M, Ergon A, Hoglind M, Jorgensen M, Jurczyk B, Ostrem L, Rognli OA, Tronsmo AM (2014) Overwintering of herbaceous plants in a changing climate. Still more questions than answers. Plant Sci 225:34–44

    Article  CAS  PubMed  Google Scholar 

  • Revilla P, Butrón A, Rodríguez VM, Malvar RA, Ordás A (2005) Breeding for cold tolerance. In: Ashraf M, Harris PJC (eds) Abiotic stresses. Plant resistance through breedingand molecular approaches. The Haworth Press, Inc, New York, pp 301–398

    Google Scholar 

  • Revilla P, Malvar RA, Cartea ME, Ordas A (1998) Identifying open-pollinated populations of field corn as sources of cold tolerance for improving sweet corn. Euphytica 101(2):239–247

    Article  Google Scholar 

  • Revilla P, Rodriguez VM, Ordas A, Rincent R, Charcosset A, Giauffret C, Melchinger AE, Schon CC, Bauer E, Altmann T, Brunel D, Moreno-Gonzalez J, Campo L, Ouzunova M, Alvarez A, de Galarreta JIR, Laborde J, Malvar RA (2016) Association mapping for cold tolerance in two large maize inbred panels. BMC Plant Biol 16:127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Revilla P, Rodriguez VM, Ordas A, Rincent R, Charcosset A, Giauffret C, Melchinger AE, Schon CC, Bauer E, Altmann T, Brunel D, Moreno-Gonzalez J, Campo L, Ouzunova M, Laborde J, Alvarez A, de Galarreta JIR, Malvar RA (2014) Cold tolerance in two large maize inbred panels adapted to European climates. Crop Sci 54(5):1981–1991

    Article  Google Scholar 

  • Reynolds M, Langridge P (2016) Physiological breeding. Curr Opin Plant Biol 31:162–171

    Article  PubMed  Google Scholar 

  • Rodriguez V, Butron A, Rady MOA, Soengas P, Revilla P (2014) Identification of quantitative trait loci involved in the response to cold stress in maize (Zea mays L.). Mol Breed 33(2):363–371

    Article  CAS  Google Scholar 

  • Salvi S, Tuberosa R (2015) The crop QTLome comes of age. Curr Opin Biotechnol 32:179–185

    Article  CAS  PubMed  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12(1):30–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14(2):194–199

    Article  CAS  PubMed  Google Scholar 

  • Semenov MA (2009) Impacts of climate change on wheat in England and Wales. J R Soc Interface 6(33):343–350

    Article  PubMed  Google Scholar 

  • Semenov MA, Stratonovitch P, Alghabari F, Gooding MJ (2014) Adapting wheat in Europe for climate change. J Cereal Sci 59(3):245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sezegen B, Carena MJ (2009) Divergent recurrent selection for cold tolerance in two improved maize populations. Euphytica 167(2):237–244

    Article  Google Scholar 

  • Sheng J, Zheng X, Wang J, Zeng X, Zhou F, Jin S, Hu Z, Diao Y (2017) Transcriptomics and proteomics reveal genetic and biological basis of superior biomass crop Miscanthus. Sci Rep 7:13777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sthapit BR, Witcombe JR (1998) Inheritance of tolerance to chilling stress in rice during germination and plumule greening. Crop Sci 38(3):660–665

    Article  Google Scholar 

  • Stojakovic M, Mitrovic B, Zoric M, Ivanovic M, Stanisavljevic D, Nastasic A, Dodig D (2015) Grouping pattern of maize test locations and its impact on hybrid zoning. Euphytica 204(2):419–431

    Article  Google Scholar 

  • Stone JM, Palta JP, Bamberg JB, Weiss LS, Harbage JF (1993) Inheritance of freezing resistance in tuber-bearing solanum species – evidence for independent genetic-control of nonacclimated freezing tolerance and cold-acclimation capacity. Proc Natl Acad Sci U S A 90(16):7869–7873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strigens A, Freitag NM, Gilbert X, Grieder C, Riedelsheimer C, Schrag TA, Messmer R, Melchinger AE (2013) Association mapping for chilling tolerance in elite flint and dent maize inbred lines evaluated in growth chamber and field experiments. Plant Cell Environ 36(10):1871–1887

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9(6):444–457

    Article  CAS  PubMed  Google Scholar 

  • Tampieri E, Baraldi E, Carnevali F, Frascaroli E, De Santis A (2011) The activity of plant inner membrane anion channel (PIMAC) can be performed by a chloride channel (CLC) protein in mitochondria from seedlings of maize populations divergently selected for cold tolerance. J Bioenerg Biomembr 43(6):611–621

    Article  CAS  PubMed  Google Scholar 

  • Tello-Ruiz MK, Naithani S, Stein JC, Gupta P, Campbell M, Olson A, Wei S, Preece J, Geniza MJ, Jiao Y, Lee YK, Wang B, Mulvaney J, Chougule K, Elser J, Al-Bader N, Kumari S, Thomason J, Kumar V, Bolser DM, Naamati G, Tapanari E, Fonseca N, Huerta L, Iqbal H, Keays M, Fuentes AM-P, Tang A, Fabregat A, D’Eustachio P, Weiser J, Stein LD, Petryszak R, Papatheodorou I, Kersey PJ, Lockhart P, Taylor C, Jaiswal P, Ware D (2018) Gramene 2018: unifying comparative genomics and pathway resources for plant research. Nucleic Acids Res 46(D1):D1181–D1189

    Article  PubMed  Google Scholar 

  • Thakur AK, Uphoff NT (2017) How the system of rice intensification can contribute to climate-smart agriculture. Agron J 109(4):1163–1182

    Article  Google Scholar 

  • Thapa B, Arora R, Knapp AD, Brummer EC (2008) Applying freezing test to quantify cold acclimation in Medicago truncatula. J Am Soc Hortic Sci 133(5):684–691

    Google Scholar 

  • Thoen MPM, Olivas NHD, Kloth KJ, Coolen S, Huang P-P, Aarts MGM, Bac-Molenaar JA, Bakker J, Bouwmeester HJ, Broekgaarden C, Bucher J, Busscher-Lange J, Cheng X, Fradin EF, Jongsma MA, Julkowska MM, Keurentjes JJB, Ligterink W, Pieterse CMJ, Ruyter-Spira C, Smant G, Testerink C, Usadel B, van Loon JJA, van Pelt JA, van Schaik CC, van Wees SCM, Visser RGF, Voorrips R, Vosman B, Vreugdenhil D, Warmerdam S, Wiegers GL, van Heerwaarden J, Kruijer W, van Eeuwijk FA, Dicke M (2017) Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping. New Phytol 213(3):1346–1362

    Article  CAS  PubMed  Google Scholar 

  • Tollenaar M, Wu J (1999) Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci 39(6):1597–1604

    Article  Google Scholar 

  • Trachsel S, Burgueno J, Suarez EA, San Vicente FM, Rodriguez CS, Dhliwayo T (2017) Interrelations among early vigor, flowering time, physiological maturity, and grain yield in tropical maize (Zea mays L.) under multiple abiotic stresses. Crop Sci 57(1):229–242

    Article  Google Scholar 

  • Trnka M, Olesen JE, Kersebaum KC, Skjelvag AO, Eitzinger J, Seguin B, Peltonen-Sainio P, Rotter R, Iglesias A, Orlandini S, Dubrovsky M, Hlavinka P, Balek J, Eckersten H, Cloppet E, Calanca P, Gobin A, Vucetic V, Nejedlik P, Kumar S, Lalic B, Mestre A, Rossi F, Kozyra J, Alexandrov V, Semeradova D, Zalud Z (2011) Agroclimatic conditions in Europe under climate change. Glob Chang Biol 17(7):2298–2318

    Article  Google Scholar 

  • Tschiersch H, Junker A, Meyer RC, Altmann T (2017) Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses. Plant Methods 13:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Via S, Gomulkiewicz R, Dejong G, Scheiner SM, Schlichting CD, Vantienderen PH (1995) Adaptive phenotypic plasticity – consensus and controversy. Trends Ecol Evol 10(5):212–217

    Article  CAS  PubMed  Google Scholar 

  • Viesselmann LM, De Vries B, Dodson HG, Tracy WF (2014) Recurrent selection for seedling growth of sweet corn in cool temperatures. Crop Sci 54(3):1033–1040

    Article  Google Scholar 

  • Waha K, van Bussel LGJ, Muller C, Bondeau A (2012) Climate-driven simulation of global crop sowing dates. Glob Ecol Biogeogr 21(2):247–259

    Article  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23(9):893–902

    Article  Google Scholar 

  • Xu WH, Li QX, Jones P, Wang XLL, Trewin B, Yang S, Zhu C, Zhai PM, Wang JF, Vincent L, Dai AG, Gao Y, Ding YH (2018) A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900. Clim Dyn 50(7–8):2513–2536

    Article  Google Scholar 

  • Xu Y (2016) Envirotyping for deciphering environmental impacts on crop plants. Theor Appl Genet 129(4):653–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Ma XF, Gao YM, Hao XB, Li ZK (2014) Genome-wide response to selection and genetic basis of cold tolerance in rice (Oryza sativa L.). BMC Genet 15:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao YS, Gowda M, Wurschum T, Longin CFH, Korzun V, Kollers S, Schachschneider R, Zeng J, Fernando R, Dubcovsky J, Reif JC (2013) Dissecting the genetic architecture of frost tolerance in Central European winter wheat. J Exp Bot 64(14):4453–4460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Frascaroli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frascaroli, E. (2018). Breeding Cold-Tolerant Crops. In: Wani, S., Herath, V. (eds) Cold Tolerance in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-01415-5_9

Download citation

Publish with us

Policies and ethics