Skip to main content

Advertisement

Log in

Selective A3 adenosine receptor agonist protects against doxorubicin-induced cardiotoxicity

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Doxorubicin (DOX) is an effective anticancer drug; however, its clinical use is limited by its cardiotoxic effect. Adenosine was proved to mediate anti-inflammatory effects and protected from myocardial ischemia/reperfusion injury. So the present work was designed to examine the effectiveness of a selective A3 adenosine receptor agonist (Cl-IB-MECA) in DOX-induced cardiotoxicity and to elucidate the underlying mechanisms via studying its effect on different oxidative stress, inflammatory and apoptotic markers.

Methods

Firstly the potential cardioprotective dose of Cl-IB-MECA was screened in male Wistar rats at different doses (20, 40 and 80 µg/kg; i.v) against a single dose of DOX (15 mg/kg; i.p). Secondly, the dose of 40 µg/kg Cl-IB-MECA was selected for further assessment of the cardioprotective mechanisms.

Results

Cl-IB-MECA at a dose 40 µg/kg (i.v) protects against DOX-induced bradycardia, elevated creatine kinase isoenzyme-MB and histopathological changes. Also, it significantly ameliorates oxidative stress injury evoked by DOX as evidenced by inhibition of reduced glutathione depletion and lipid peroxidation as well as elevation of antioxidant enzyme activities. Additionally, DOX provoked inflammatory responses by increasing the expressions of nuclear factor kappa B and the levels of tumor necrosis factor alpha. Cl-IB-MECA pretreatment significantly inhibited these inflammatory responses. Furthermore, DOX induced apoptotic tissue damage by increasing cytochrome c expressions which was suppressed by Cl-IB-MECA pretreatment.

Conclusion

Cl-IB-MECA protects against DOX-induced cardiotoxicity through restoration of the oxidant/antioxidant status and consequential suppression of DOX-induced inflammatory responses and abrogation of the resultant apoptotic signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ (2014) Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med Res Rev 34(1):106–135

    Article  CAS  PubMed  Google Scholar 

  2. Berardi R, Caramanti M, Savini A, Chiorrini S, Pierantoni C, Onofri A, Ballatore Z, De Lisa M, Mazzanti P, Cascinu S (2013) State of the art for cardiotoxicity due to chemotherapy and to targeted therapies: a literature review. Crit Rev Oncol Hematol 88(1):75–86

    Article  PubMed  Google Scholar 

  3. Takemura G, Fujiwara H (2007) Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 49:330–352

    Article  CAS  PubMed  Google Scholar 

  4. Ueno M, Kakinuma Y, Yuhki K, Murakoshi N, Iemitsu M, Miyauchi T, Yamaguchi I (2006) Doxorubicin induces apoptosis by activation of caspase-3 in cultured cardiomyocytes in vitro and rat cardiac ventricles in vivo. J Pharmacol Sci 101(2):151–158

    Article  CAS  PubMed  Google Scholar 

  5. Ashour AE, Sayed-Ahmed MM, Abd-Allah AR, Korashy HM, Maayah ZH, Alkhalidi H, Mubarak M, Alhaider A (2012) Metformin rescues the myocardium from doxorubicin-induced energy starvation and mitochondrial damage in rats. Oxid Med Cell Longev 2012:434195

    PubMed Central  PubMed  Google Scholar 

  6. Virag L, Szabo C (2001) Purines inhibit poly (ADP-ribose) polymerase activation and modulate oxidant-induced cell death. FASEB J 15(1):99–107

    Article  CAS  PubMed  Google Scholar 

  7. Salvatore CA, Tilley SL, Latour AM, Fletcher DS, Koller BH, Jacobson MA (2000) Disruption of the A(3) adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J Biol Chem 275(6):4429–4434

    Article  CAS  PubMed  Google Scholar 

  8. Gessi S, Cattabriga E, Avitabile A, Gafa’ R, Lanza G, Cavazzini L, Bianchi N, Gambari R, Feo C, Liboni A, Gullini S, Leung E, Mac-Lennan S, Borea PA (2004) Elevated expression of A3 adenosine receptors in human colorectal cancer is reflected in peripheral blood cells. Clin Cancer Res 10(17):5895–5901

    Article  CAS  PubMed  Google Scholar 

  9. Ochaion A, Bar-Yehuda S, Cohen S, Barer F, Patoka R, Amital H, Reitblat T, Reitblat A, Ophir J, Konfino I, Chowers Y, Ben-Horin S, Fishman P (2009) The anti-inflammatory target A(3) adenosine receptor is over-expressed in rheumatoid arthritis, psoriasis and Crohn’s disease. Cell Immunol 258(2):115–122

    Article  CAS  PubMed  Google Scholar 

  10. Fishman P, Bar-Yehuda S, Madi L, Rath-Wolfson L, Ochaion A, Cohen S, Baharav E (2006) The PI3K-NF-κB signal transduction pathway is involved in mediating the anti-inflammatory effect of IB-MECA in adjuvant-induced arthritis. Arthritis Res Ther 8:1–9

    Article  Google Scholar 

  11. Madi L, Cohn S, Ochaion A, Bar-Yehuda S, Barer F, Fishman P (2007) Over-expression of A3 Adenosine receptor in PBMC of rheumatoid arthritis patients: involvement of NF-κB in mediating receptor level. J Rheumatol 34:20–26

    CAS  PubMed  Google Scholar 

  12. Fishman P, Bar-Yehuda S, Liang BT, Jacobsonc KA (2012) Pharmacological and therapeutic effects of A3 adenosine receptor (A3AR) agonists. Drug Discov Today 17(7–8):359–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Bar-Yehuda S, Stemmer SM, Madi L, Castel D, Ochaion A, Cohen S, Barer F, Zabutti A, Perez-Liz G, Del Valle L, Fishman P (2008) The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappa B signal transduction pathways. Int J Oncol 33(2):287–295

    CAS  PubMed  Google Scholar 

  14. Varani K, Vincenzi F, Tosi A, Targa M, Masieri FF, Ongaro A, De Mattei M, Massari L, Borea PA (2010) Expression and functional role of adenosine receptors in regulating inflammatory responses in human synoviocytes. Br J Pharmacol 160(1):101–115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Silverman MH, Strand V, Markovits D et al (2008) Clinical evidence for utilization of the A3 adenosine receptor as a target to treat rheumatoid arthritis: data from a phase II clinical trial. J Rheumatol 35:1–7

    Google Scholar 

  16. Tracey WR, Magee WP, Oleynek JJ, Hill RJ, Smith AH, Flynn DM, Knight DR (2003) Novel N6-substituted adenosine 5′-N-methyluronamides with high selectivity for human adenosine A3 receptors reduce ischemic myocardial injury. Am J Physiol Heart Circ Physiol 285:H2780–H2787

    Article  CAS  PubMed  Google Scholar 

  17. Hussain A, Gharanei AM, Nagra AS, Maddock HL (2014) Caspase inhibition via A3 adenosine receptors: a new cardioprotective mechanism against myocardial infarction. Cardiovasc Drugs Ther 28(1):19–32

    Article  CAS  PubMed  Google Scholar 

  18. Shneyvays V, Mamedova L, Zinman T, Jacobson K, Shainberg A (2001) Activation of A3 adenosine receptor protects against doxorubicin-induced cardiotoxicity. J Mol Cell Cardiol 33(6):1249–1261

    Article  CAS  PubMed  Google Scholar 

  19. Zucchi R, Yu G, Ghelardoni S, Ronca F, Ronca-Testoni S (2001) A3 adenosine receptor stimulation modulates sarcoplasmic reticulum Ca(2+) release in rat heart. Cardiovasc Res 50:56–64

    Article  CAS  PubMed  Google Scholar 

  20. Mantawy EM, El-Bakly WM, Esmat A, Badr AM, El-Demerdash E (2014) Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Eur J Pharmacol 728:107–118

    Article  CAS  PubMed  Google Scholar 

  21. Dobrek T, Thor P (2013) Heart rate variability in overactive bladder experimental model. Arch Med Sci 9(5):930–935

    Article  PubMed Central  PubMed  Google Scholar 

  22. Choi IY, Lee JC, Ju C, Hwang S, Cho GS, Lee HW, Choi WJ, Jeong LS, Kim WK (2011) A3 adenosine receptor agonist reduces brain ischemic injury and inhibits inflammatory cell migration in rats. Am J Pathol 179:2042–2052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Saeed NM, El-Naga RN, El-Bakly WM, Abdel-Rahman HM, El-Demerdash E (2015) Epigallocatechin-3-gallate pretreatment attenuates doxorubicin-induced cardiotoxicity in rats: a mechanistic study. Biochem Pharmacol 95(3):145–155

    Article  CAS  PubMed  Google Scholar 

  24. Fouad AA, Yacoubi MT (2011) Mechanisms underlying the protective effect of eugenol in rats with acute doxorubicin cardiotoxicity. Arch Pharm Res 34(5):821–828

    Article  CAS  PubMed  Google Scholar 

  25. Patel M, Sheehan MJ, Strong P (1994) Failure of CGS15943A to block the hypotensive action of agonists acting at the adenosine A3 receptor. Br J Pharmacol 113(3):741–748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Yang JN, Tiselius C, Dare E, Johansson B, Valen G, Fredholm BB (2007) Sex differences in mouse heart rate and body temperature and in their regulation by adenosine A1 receptors. Acta Physiol 190(4):63–75

    Article  CAS  Google Scholar 

  27. Zanwar AA, Hegde Mahabaleshwar V, Bodhankar Subhash L (2013) Protective role of concomitant administration of flax lignin concentrate and omega-3-fatty acid on myocardial damage in doxorubicin-induced cardiotoxicity. Food Sci Hum Wellness 2(1):29–38

    Article  Google Scholar 

  28. Shah SL, Mali VR, Zambare GN, Bodhankar SL (2012) Cardioprotective activity of methanol extract of fruit of Trichosanthes cucumerina on doxorubicin-induced cardiotoxicity in Wistar rats. Toxicol Int 19(2):167–172

    Article  PubMed Central  PubMed  Google Scholar 

  29. Osman AM, Nemnem MM, Abou-Bakr AA, Nassier OA, Khayyal MT (2009) Effect of methimazole treatment on doxorubicin-induced cardiotoxicity in mice. Food Chem Toxicol 47(10):2425–2430

    Article  CAS  PubMed  Google Scholar 

  30. Sandri MT, Salvatici M, Cardinale D, Zorzino L, Passerini R, Lentati P, Leon M, Civelli M, Martinelli G, Cipolla CM (2005) N-terminal pro- B-type natriuretic peptide after high-dose chemotherapy: a marker predictive of cardiac dysfunction. Clin Chem 51(8):1405–1410

    Article  CAS  PubMed  Google Scholar 

  31. Emanuelov AK, Shainberg A, Chepurko Y, Kaplan D, Sagie A, Porat E, Arad M, Hochhauser E (2010) Adenosine A3 receptor-mediated cardioprotection against doxorubicin-induced mitochondrial damage. Biochem Pharmacol 79(2):180–187

    Article  CAS  PubMed  Google Scholar 

  32. Olson RD, Mushlin PS (1990) Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. FASEB J 4:3076–3086

    CAS  PubMed  Google Scholar 

  33. Herman EH, Zhang J, Chadwick DP, Ferrans VJ (2000) Comparison of the protective effects of amifostine and dexrazoxane against the toxicity of doxorubicin in spontaneously hypertensive rats. Cancer Chemother Pharmacol 45:329–334

    Article  CAS  PubMed  Google Scholar 

  34. Wan TC, Ge ZD, Tampo A, Mio Y, Bienengraeber MW, Tracey WR, Gross GJ, Kwok WM, Auchampach JA (2008) The A3 adenosine receptor agonist CP-532,903 [N6-(2,5-dichlorobenzyl)-3′-aminoadenosine-5′-N-methylcarboxamide] protects against myocardial ischemia/reperfusion injury via the sarcolemmal ATP-sensitive potassium channel. J Pharmacol Exp Ther 324(1):234–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Ge ZD, van der Hoeven D, Maas JE, Wan TC, Auchampach JA (2010) A(3) adenosine receptor activation during reperfusion reduces infarct size through actions on bone marrow-derived cells. J Mol Cell Cardiol 49(2):280–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Aggarwal BB, Takada Y, Shishodia S, Gutierrez AM, Oommen OV, Ichikawa H, Baba Y, Kumar A (2004) Nuclear transcription factor NF-kappa B: role in biology and medicine. Indian J Exp Biol 42:341–353

    CAS  PubMed  Google Scholar 

  37. El-Aziz TAA, Mohamed RH, Pasha HF, Abdel-Aziz HR (2012) Catechin protects against oxidative stress and inflammatory-mediated cardiotoxicity in adriamycin-treated rats. Clin Exp Med 12:233–240

    Article  Google Scholar 

  38. Surh YJ, Na HK (2008) NF-κB and Nrf2 as prime molecular targets for chemoprevention and cytoprotection with anti-inflammatory and antioxidant phytochemicals. Genes Nutr 2:313–317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Zhang Y-W, Shi J, Li Y-J, Wei L (2009) Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch Immunol Ther Exp 57(6):435–445

    Article  CAS  Google Scholar 

  40. Nitobe J, Yamaguchi S, Okuyama M, Nozaki N, Sata M, Miyamoto T, Takeishi Y, Kubota I, Tomoike H (2003) Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas-mediated apoptosis in cardiac myocytes. Cardiovasc Res 57:119–128

    Article  CAS  PubMed  Google Scholar 

  41. Childs AC, Phaneuf SL, Dirks AJ, Phillips T, Leeuwenburgh C (2002) Doxorubicin treatment in vivo causes cytochrome c release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2: bax ratio. Cancer Res 62(16):4592–4598

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to show our gratitude to Mona Hussein Rafeet, Lecturer of Histology, Department of Histology, Faculty of Medicine, Ain Shams University, Egypt, for assistance with Immunohistochemical quantification which was carried out using image analysis software (ImageJ, 1.46a, NIH, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebtehal El-Demerdash.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galal, A., El-Bakly, W.M., Al Haleem, E.N.A. et al. Selective A3 adenosine receptor agonist protects against doxorubicin-induced cardiotoxicity. Cancer Chemother Pharmacol 77, 309–322 (2016). https://doi.org/10.1007/s00280-015-2937-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2937-y

Keywords

Navigation