Skip to main content

Glucose Transport in White Adipocyte

  • Chapter
  • First Online:
Physiology and Physiopathology of Adipose Tissue

Abstract

Adipocyte glucose transport is a key event for glucose homeostasis and is perturbed in insulin resistant situations like in obesity and type 2 diabetes. We will discuss how glucose transport is regulated in adipocyte, in normal, and in physiopathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel ED, Peroni OD, Kim JK et al (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409:729–733

    Article  PubMed  CAS  Google Scholar 

  • Aran V, Bryant NJ, GG W (2011) Tyrosine phosphorylation of Munc18c on residue 521 abrogates binding to syntaxin 4. BMC Biochem 12:19

    Article  PubMed  CAS  Google Scholar 

  • Bogan JS, Kandror KV (2010) Biogenesis and regulation of insulin-responsive vesicles containing Glut4. Curr Opin Cell Biol 22:506–512

    Article  PubMed  CAS  Google Scholar 

  • Bryant NJ, Gould GW (2011) SNARE proteins underpin insulin-regulated GLUT4 traffic. Traffic 12:657–664

    Article  PubMed  CAS  Google Scholar 

  • Carvalho E, Kotani K, Peroni OD et al (2005) Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. Am J Physiol Endocrinol Metab 289:E551–E561

    Article  PubMed  CAS  Google Scholar 

  • Cushman SW, Wardzala LJ (1980) Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem 255:4758–4762

    PubMed  CAS  Google Scholar 

  • Dash S, Langenberg C, Fawcett KA et al (2010) Analysis of TBC1D4 in patients with severe insulin resistance. Diabetologia 53:1239–1342

    Article  PubMed  CAS  Google Scholar 

  • Dhalla AK, Wong MY, Voshol PJ et al (2007) A1 adenosine receptor partial agonist lowers plasma FFA and improves insulin resistance induced by high-fat diet in rodents. Am J Physiol Endocrinol Metab 292:E1358–E1363

    Article  PubMed  CAS  Google Scholar 

  • Dong Q, Ginsberg HN, Erlanger BF (2001) Overexpression of the A1 adenosine receptor in adipose tissue protects mice from obesity-related insulin resistance. Diabetes Obes Metab 3:360–366

    Article  PubMed  CAS  Google Scholar 

  • Faulhaber-Walter R, Jou W, Mizel D et al (2011) Impaired glucose tolerance in the absence of adenosine A1 receptor signaling. Diabetes 60:2578–2587

    Article  PubMed  CAS  Google Scholar 

  • Figler RA, Wang G, Srinivasan S et al (2011) Links between insulin resistance, adenosine A2B receptors, and inflammatory markers in mice and humans. Diabetes 60:669–679

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Hatakeyama H, Watanabe TM et al (2010) Identification of three disting functional sites of insulin-mediated GLUT4 trafficking in adipocytes using quantitative single molecule imaging. Mol Biol Cell 21:2721–2731

    Article  PubMed  CAS  Google Scholar 

  • Garvey WT, Maianu L, Zhu J-H et al (1993) Multiple defects in the adipocyte glucose transport system cause cellular insulin resistance in gestational diabetes. Heterogeneity in the number and a novel abnormality in subcellular localization of GLUT4 glucose transporters. Diabetes 42:1773–1785

    Article  PubMed  CAS  Google Scholar 

  • Graham TE, Kahn BB (2007) Tissue-specific alterations of glucose transport and molecular mechanisms of intertissue communication in obesity and type 2 diabetes. Horm Metab Res 39:717–721

    Article  PubMed  CAS  Google Scholar 

  • Gual P, Le Marchand-Brustel Y, Tanti JF (2003) Positive and negative regulation of glucose uptake by hyperosmotic stress. Diabetes Metab 29:566–575

    Article  PubMed  CAS  Google Scholar 

  • Hajduch E, Darakhshan F, Hundal HS (1998) Fructose uptake in rat adipocytes: GLUT5 expression and the effects of streptozotocin-induced diabetes. 41:821–828

    Google Scholar 

  • Heseltine L, Webster JM, Taylor R (1995) Adenosine effects upon insulin action on lipolysis and glucose transport in human adipocytes. Mol Cell Biochem 144:147–151

    Article  PubMed  CAS  Google Scholar 

  • Hoehn KL, Hohnen-Behrens C, Cederberg A et al (2008) IRS1-independent defects define major nodes of insulin resistance. Cell Metab 7:233–421

    Article  Google Scholar 

  • Im S–S, Kwon S-K, Kim T-H et al (2007) Regulation of glucose transporter type 4 isoform gene expression in muscles and adipocytes. IUBMB Life 59:134–145

    Article  PubMed  CAS  Google Scholar 

  • Jewell JL, Oh E, Ramalingam L et al (2011) Munc18c phosphorylation by insulin receptor links cell signaling directly to SNARE exocytosis. J Cell Biol 193:185–199

    Article  PubMed  CAS  Google Scholar 

  • Kaddai V, Gonzalez T, Bolla M et al (2008a) The nitric oxide-donating derivative of acetylsalicylic acid, NCX 4016, stimulates glucose transport and glucose transporters translocation in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 192:E162–E169

    Article  Google Scholar 

  • Kaddai V, Le Marchand-Brustel Y, Cormont M (2008b) Rab proteins in endocytosis and Glut4 trafficking. Acta Physiol 192:75–88

    Article  CAS  Google Scholar 

  • Kaddai V, Jager J, Gonzalez T et al (2009a) Involvement of TNF-alpha in abnormal adipocyte and muscle sortilin expression in obese mice and humans. Diabetologia 2009:932–940

    Article  Google Scholar 

  • Kaddai V, Gonzalez T, Keslair F et al. (2009b) Rab4b is a small GTPase involved in the control of the glucose transporter GLUT4 localization in adipocyte. PLoS One 4(4):e5257

    Google Scholar 

  • Kobayashi M, Nikami H, Morimatsu M et al (1996) Expression and localisation of insulin-regulatable glucocse transporter (GLUT4) in rat brain. Neurosci Lett 213:103–106

    Article  PubMed  CAS  Google Scholar 

  • Koumanov F, Jin B, Yang J et al (2005) Insulin signaling meets vesicle traffic of GLUT4 at a plasma-membrane-activated fusion step. Cell Metab 2:179–189

    Article  PubMed  CAS  Google Scholar 

  • Lewko B, Bryl E, Witkowski JM et al (2005) Characterization of glucose uptake by cultured rat podocytes. Kidney Blood Press Res 28:1–7

    Article  PubMed  CAS  Google Scholar 

  • Liao W, Nguyen MT, Imamura T et al (2006) Lentiviral short hairpin ribonucleic acid-mediated knockdown of GLUT4 in 3T3-L1 adipocytes. Endocrinology 147:2245–2252

    Article  PubMed  CAS  Google Scholar 

  • Long SD, Pekala PH (1996) Regulation of GLUT4 mRNA stability by tumor necrosis factor-alpha: alterations in both protein binding to the 3′ untranslated region and initiation of translation. Biochem Biophys Res Commun 220:949–953

    Article  PubMed  CAS  Google Scholar 

  • Lumeng CN, Deyoung SM, Saltiel AR (2006) Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am J Pysiol Endocrinol Metab 292:E166–E174

    Article  Google Scholar 

  • Maianu L, Keller SR, Garvey WT (2001) Adipocytes exhibit abnormal subcellular distribution and translocation of vesicles containing glucose transporter 4 and insulin-regulated aminopeptidase in type 2 diabetes mellitus: implication regarding defects in vesicle trafficking. J Clin Endocrinol Metab 86:5450–5456

    Article  PubMed  CAS  Google Scholar 

  • Mari M, Monzo P, Kaddai V et al (2006) The Rab4 effector Rabip4 plays a role in intracellular trafficking of Glut 4 in 3T3-L1 adipocytes. J Cell Sci 119:1297–1306

    Article  PubMed  CAS  Google Scholar 

  • Novick P, Medkova M, Dong G et al (2006) Interactions between Rabs, tethers, SNAREs and their regulators in exocytosis. Biochem Soc Trans 34:683–686

    Article  PubMed  CAS  Google Scholar 

  • Pessler-Cohen D, Pekala PH, Kosvan J et al (2006) GLUT4 repression in response to oxidative stress is associated with reciprocal alterations in C/EBP alpha and delta isoforms in 3T3-L1 adipocytes. Arch Physiol Biochem 112:3–12

    Article  PubMed  CAS  Google Scholar 

  • Purcell SC, Aerni-Flessner LB, Willcockson AR et al (2011) Improved insulin sensitivity by GLUT12 overexpression in mice. Diabetes 60:1478–1482

    Article  PubMed  CAS  Google Scholar 

  • Qi L, Saberi M, Zmuda E et al (2009) Adipocyte CREB promotes insulin resistance in obesity. Cell Metab 9:277–286

    Article  PubMed  CAS  Google Scholar 

  • Regazzetti C, Peraldi P, Grémeaux T et al (2009) Hypoxia decreases insulin signaling pathways in adipocytes. Diabetes 58:95–103

    Article  PubMed  CAS  Google Scholar 

  • Rowland AF, Fazakerley DJ, James DE (2011) Mapping insulin/GLUT4 circuitry. Traffic 12:672–681

    Article  PubMed  CAS  Google Scholar 

  • Ruan H, Hacohen N, Golub TR et al (2002) Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes 51:1319–1336

    Article  PubMed  CAS  Google Scholar 

  • Rubin BR, Bogan JS (2009) Intracellular retention and insulin stimulated mobilization of GLUT4 glucose transporters. Vitam Horm 80:155–192

    Article  PubMed  CAS  Google Scholar 

  • Sano H, Peck GR, Kettenbach AN et al (2011) Insulin-stimulated GLUT4 protein translocation in adipocytes requires the Rab10 guanine nucleotide exchange factor Dennd4C. J Biol Chem 286:16541–16545

    Article  PubMed  CAS  Google Scholar 

  • Skrypski M, Le T, Kaczmarek P T et al (2011) Orexin A stimulates glucose uptake, lipid accumulation and adiponectin secretion from 3T3-L1 adipocytes and isolated primary rat adipocytes. Diabetologia 54:1841–1852

    Article  Google Scholar 

  • Sparling DP, Griesel BA, Weems J et al (2008) GLUT4 enhancer factor (GEF) interacts with MEF2A and HDAC5 to regulate GLUT4 promoter in adipocytes. J Biol Chem 283:7429–7434

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Kono T (1980) Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc Natl Acad Sci USA 77:2542–2545

    Article  PubMed  CAS  Google Scholar 

  • Thorens B, Mueckler M (2009) Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab 298:E141–E145

    Article  PubMed  Google Scholar 

  • Weber-Boyvat M, Aro N, Chernov KG et al (2011) Sec1p and Mso1p C-terminal tails cooperate with SNAREs and Sec4 in ploarized exocytosis. Mol Biol Cell 22:230–244

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Motoshima H, Mahadev K et al. (2003) Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 1355–1363

    Google Scholar 

  • Xie X, Gong Z, Mansuy-Aubert V et al (2011) C2 domain-containing phosphoprotein CDP138 regulates Glut4 insertion into the plasma membrane. Cell Metab 14:378–389

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Rubin BR, Orme CM et al (2011) Dual-mode of insulin action controls GLUT4 vesicle exocytosis. J Cell Biol 193:643–653

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Graham TE, Mody N et al (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436:337–338

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireille Cormont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag France

About this chapter

Cite this chapter

Cormont, M., Kaddai, V. (2013). Glucose Transport in White Adipocyte. In: Bastard, JP., Fève, B. (eds) Physiology and Physiopathology of Adipose Tissue. Springer, Paris. https://doi.org/10.1007/978-2-8178-0343-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0343-2_7

  • Published:

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0342-5

  • Online ISBN: 978-2-8178-0343-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics