Skip to main content

Determination of the Half-Life of Chloroplast Transcripts in Tobacco Leaves

  • Protocol
  • First Online:
Chloroplast Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1132))

  • 3958 Accesses

Abstract

The amounts of specific transcripts that accumulate in chloroplasts are determined by the rates of synthesis and degradation of the transcripts. The 3′ untranslated region of transcripts is a major determinant of the stability of transcripts in chloroplasts. The half-lives of specific transcripts can be determined by northern blot analysis of a time course of transcripts in detached tobacco leaves incubated with actinomycin D, a potent transcription inhibitor. This analysis may be applied to transcripts of endogenous genes or of transgenes introduced into the chloroplast genome in transplastomic plants. Sequence determinants of transcript stability can be identified by analysis of transplastomic plants containing constructs of the green fluorescent protein (gfp) reporter gene fused to the sequences of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barkan A, Goldschmidt-Clermont M (2000) Participation of nuclear genes in chloroplast gene expression. Biochimie 82:559–572

    Article  CAS  PubMed  Google Scholar 

  2. Gruissem W (1989) Chloroplast gene expression: how plants turn their plastids on. Cell 56:161–170

    Article  CAS  PubMed  Google Scholar 

  3. Gruissem W, Tonkyn JC (1993) Control mechanisms of plastid gene expression. Crit Rev Plant Sci 12:19–55

    Article  CAS  Google Scholar 

  4. Deng XW, Gruissem W (1987) Control of plastid gene expression during development: the limited role of transcriptional regulation. Cell 49:379–387

    Article  CAS  PubMed  Google Scholar 

  5. Deng XW, Gruissem W (1988) Constitutive transcription and regulation of gene expression in non-photosynthetic plastids of higher plants. EMBO J 17:3301–3308

    Google Scholar 

  6. Rapp JC, Baumgartner BJ, Mullet J (1992) Quantitative analysis of transcription and RNA levels of 15 barley chloroplast genes. Transcription rates and mRNA levels vary over 300-fold; predicted mRNA stabilities vary 30-fold. J Biol Chem 267:21404–21411

    CAS  PubMed  Google Scholar 

  7. Klaff P, Gruissem W (1991) Changes in chloroplast mRNA stability during leaf development. Plant Cell 3:517–529

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Nickelsen J, Link G (1993) The 54 kDa RNA-binding protein from mustard chloroplasts mediates endonucleolytic transcript 3′ end formation in vitro. Plant J 3:537–544

    Article  CAS  PubMed  Google Scholar 

  9. Hayes R, Kudla J, Schuster G, Gabay L, Maliga P, Gruissem W (1996) Chloroplast mRNA 3′-end processing by a high molecular weight protein complex is regulated by nuclear encoded RNA binding proteins. EMBO J 15:1132–1141

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Westhoff P, Herrmann RG (1988) Complex RNA maturation in chloroplasts. The psbB operon from spinach. Eur J Biochem 171:551–564

    Article  CAS  PubMed  Google Scholar 

  11. Yang J, Schuster G, Stern DB (1996) CSP41, a sequence-specific chloroplast mRNA binding protein, is an endoribonuclease. Plant Cell 8:1409–1420

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Kuroda H, Maliga P (2002) Overexpression of the clpP 5′-untranslated region in a chimeric context causes a mutant phenotype, suggesting competition for a clpP-specific RNA maturation factor in tobacco chloroplasts. Plant Physiol 129:1600–1606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Bock R, Hermann M, Kossel H (1996) In vivo dissection of cis-acting determinants for plastid RNA editing. EMBO J 15:5052–5059

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Knoop V (2010) When you can’t trust the DNA: RNA editing changes transcript sequences. Cell Mol Life Sci 68:567–586. doi:10.1007/s00018-010-0538-9

    Article  PubMed  Google Scholar 

  15. Barkan A (1989) Tissue-dependent plastid RNA splicing in maize: transcripts from four plastid genes are predominantly unspliced in leaf meristems and roots. Plant Cell 1:437–445

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Perron K, Goldschmidt-Clermont M, Rochaix JD (1999) A factor related to pseudouridine synthases is required for chloroplast group II intron trans-splicing in Chlamydomonas reinhardtii. EMBO J 18:6481–6490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rivier C, Goldschmidt-Clermont M, Rochaix JD (2001) Identification of an RNA-protein complex involved in chloroplast group II intron trans-splicing in Chlamydomonas reinhardtii. EMBO J 20:1765–1773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kim M, Christopher DA, Mullet JE (1993) Direct evidence for selective modulation of psbA, rpoA, rbcL and 16S RNA stability during barley chloroplast development. Plant Mol Biol 22:447–463

    Article  CAS  PubMed  Google Scholar 

  19. Boudreau E, Nickelsen J, Lemaire SD, Ossenbuhl F, Rochaix JD (2000) The Nac2 gene of Chlamydomonas encodes a chloroplast TPR-like protein involved in psbD mRNA stability. EMBO J 19:3366–3376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Vaistij FE, Goldschmidt-Clermont M, Wostrikoff K, Rochaix JD (2000) Stability determinants in the chloroplast psbB/T/H mRNAs of Chlamydomonas reinhardtii. Plant J 21:469–482

    Article  CAS  PubMed  Google Scholar 

  21. Thomas PS (1980) Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A 77: 5201–5205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Deng XW, Stern DB, Tonkyn JC, Gruissem W (1987) Plastid run-on transcription. Application to determine the transcriptional regulation of spinach plastid genes. J Biol Chem 262:9641–9648

    CAS  PubMed  Google Scholar 

  23. Tangphatsornruang S, Birch-Machin I, Newell CA, Gray JC (2010) The effect of different 3′ untranslated regions on the accumulation and stability of transcripts of a gfp transgene in chloroplasts of transplastomic tobacco. Plant Mol Biol 76:385–396. doi:10.1007/s11103-010-9689-1

    Article  PubMed  Google Scholar 

  24. Crouse EJ, Bohnert HJ, Schmitt JM (1984) Chloroplast RNA synthesis. In: Ellis RJ (ed) Chloroplast biogenesis. Cambridge University Press, Cambridge, pp 83–136

    Google Scholar 

  25. Stern DB, Gruissem W (1987) Control of plastid gene expression: 3′ inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell 51:1145–1157

    Article  CAS  PubMed  Google Scholar 

  26. Stern DB, Radwanski ER, Kindle KL (1991) A 3′ stem/loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. Plant Cell 3:285–297

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Stern DB, Kindle KL (1993) 3′ end maturation of the Chlamydomonas reinhardtii chloroplast atpB mRNA is a two-step process. Mol Cell Biol 13:2277–2285

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Rott R, Drager RG, Stern DB, Schuster G (1996) The 3′ untranslated regions of chloroplast genes in Chlamydomonas reinhardtii do not serve as efficient transcriptional terminators. Mol Gen Genet 252:676–683

    CAS  PubMed  Google Scholar 

  29. Rott R, Liveanu V, Drager RG, Stern DB, Schuster G (1998) The sequence and structure of the 3′-untranslated regions of chloroplast transcripts are important determinants of mRNA accumulation and stability. Plant Mol Biol 36:307–314

    Article  CAS  PubMed  Google Scholar 

  30. Monde RA, Greene JC, Stern DB (2000) The sequence and secondary structure of the 3′-UTR affect 3′-end maturation, RNA accumulation, and translation in tobacco chloroplasts. Plant Mol Biol 44:529–542

    Article  CAS  PubMed  Google Scholar 

  31. Zerges W (2000) Translation in chloroplasts. Biochimie 82:583–601

    Article  CAS  PubMed  Google Scholar 

  32. Eibl C, Zhou Z, Beck A, Kim M, Mullet J, Koop H-U (1999) In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J 19:333–345

    Article  CAS  PubMed  Google Scholar 

  33. Goldschmidt-Clermont M, Rahire M, Rochaix JD (2008) Redundant cis-acting determinants of 3′ processing and RNA stability in the chloroplast rbcL mRNA of Chlamydomonas. Plant J 53:566–577

    Article  CAS  PubMed  Google Scholar 

  34. Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Biol 5:164–172

    Article  CAS  PubMed  Google Scholar 

  35. Staub J, Maliga P (1994) Translation of psbA mRNA is regulated by light via the 5′-untranslated region in tobacco plastids. Plant J 6:547–553

    Article  CAS  PubMed  Google Scholar 

  36. Lin-Chao S, Chiou NT, Schuster G (2007) The PNPase, exosome and RNA helicases as the building components of evolutionarily-conserved RNA degradation machines. J Biomed Sci 14:523–532

    Article  PubMed  Google Scholar 

  37. Barnes D, Franklin S, Schultz J, Henry R, Brown E, Coragliotti A, Mayfield SP (2005) Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Genet Genomics 274:625–636

    Article  CAS  PubMed  Google Scholar 

  38. Birch-Machin I, Newell CA, Hibberd JM, Gray JC (2004) Accumulation of rotavirus VP6 protein in chloroplasts of transplastomic tobacco is limited by protein stability. Plant Biotechnol J 2:261–270

    Article  CAS  PubMed  Google Scholar 

  39. Leaver CJ, Ingle J (1971) The molecular integrity of chloroplast ribosomal ribonucleic acid. Biochem J 123:235–243

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Atchison BA, Bourque DP, Wildman SG (1973) Preservation of 23S chloroplast RNA as a single chain of nucleotides. Biochim Biophys Acta 331:382–389

    Article  CAS  PubMed  Google Scholar 

  41. Nishimura K, Ashida H, Ogawa T, Yokota A (2010) A DEAD box protein is required for formation of a hidden break in Arabidopsis chloroplast 23S rRNA. Plant J 63:766–777

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Sue Aspinall for help in writing this article and for laboratory assistance during the development of the methods described. S.T. was supported by a scholarship from the Thai Government during the development of the methods described.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tangphatsornruang, S., Gray, J.C. (2014). Determination of the Half-Life of Chloroplast Transcripts in Tobacco Leaves. In: Maliga, P. (eds) Chloroplast Biotechnology. Methods in Molecular Biology, vol 1132. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-995-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-995-6_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-994-9

  • Online ISBN: 978-1-62703-995-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics