Skip to main content

Modern Bioanalysis of Proteins by Electrophoretic Techniques

  • Protocol
  • First Online:
Protein Downstream Processing

Abstract

In 1957, protein rich in cysteine able to bind cadmium was isolated from horse kidney and named as metallothionein according to its structural properties. Further, this protein and metallothionein-like proteins have been found in tissues of other animal species, yeasts, fungi and plants. MT is as a potential cancer marker in the focus of interest, and its properties, functions, and behavior under various conditions are intensively studied. Our protocol describes separation of two major mammalian isoforms of MT (MT-1 and MT-2) using capillary electrophoresis (CE) coupled with UV detector. This protocol enables separation of MT isoforms and studying of their basic behavior as well as their quantification with detection limit in units of ng per μL. Sodium borate buffer (20 mM, pH 9.5) was optimized as a background electrolyte, and the separation was carried out in fused silica capillary with internal diameter of 75 μm and electric field intensity of 350 V/cm. Optimal detection wavelength was 254 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Margoshes M, Vallee BL (1957) A cadmium protein from equine kidney cortex. J Am Chem Soc 79:4813–4814

    Article  CAS  Google Scholar 

  2. Murray RK, Granner DK, Mayes PA, Rodwell VW (2003) Harper’s illustrated biochemistry. Lange Medical Books, New York

    Google Scholar 

  3. Eckschlager T, Adam V, Hrabeta J, Figova K, Kizek R (2009) Metallothioneins and cancer. Curr Protein Pept Sci 10:360–375

    Article  CAS  PubMed  Google Scholar 

  4. Ryvolova M, Adam V, Kizek R (2012) Analysis of metallothionein by capillary electrophoresis. J Chromatogr A 1226:31–42

    Article  CAS  PubMed  Google Scholar 

  5. Ryvolova M, Krizkova S, Adam V, Beklova M, Trnkova L, Hubalek J et al (2011) Analytical methods for metallothionein detection. Curr Anal Chem 7:243–261

    CAS  Google Scholar 

  6. Adam V, Fabrik I, Eckschlager T, Stiborova M, Trnkova L, Kizek R (2010) Vertebrate metallothioneins as target molecules for analytical techniques. Trends Anal Chem 29:409–418

    Article  CAS  Google Scholar 

  7. McCormick CC, Lin LY (1991) Quantification and identification of metallothioneins by gel-electrophoresis and silver staining. Methods Enzymol 205:71–78

    Article  CAS  PubMed  Google Scholar 

  8. Shi W, Chance MR (2008) Metallomics and metalloproteomics. Cell Mol Life Sci 65:3040–3048

    Article  CAS  PubMed  Google Scholar 

  9. Diniz MS, Santos HM, Costa PM, Peres I, Costa MH, Capelo JL (2007) Metallothionein responses in the Asiatic clam (Corbicula fluminea) after exposure to trivalent arsenic. Biomarkers 12:589–598

    Article  CAS  PubMed  Google Scholar 

  10. Otsuka F, Komatsu-Okugaito M, Koizumi S, Ohsawa M (2006) Analysis of human proteins that have an affinity to heavy metals by metal-chelating column chromatography. Ind Health 44:674–678

    Article  CAS  PubMed  Google Scholar 

  11. Viarengo A, Ponzano E, Dondero F, Fabbri R (1997) A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar Environ Res 44:69–84

    Article  CAS  Google Scholar 

  12. Maya JD, Rodriguez A, Pino L, Pabon A, Ferreira J, Pavani M et al (2004) Effects of buthionine sulfoximine nifurtimox and benznidazole upon trypanothione and metallothionein proteins in Trypanosoma cruzi. Biol Res 37:61–69

    Article  CAS  PubMed  Google Scholar 

  13. Alhama J, Romero-Ruiz A, Lopez-Barea J (2006) Metallothionein quantification in clams by reversed-phase high-performance liquid chromatography coupled to fluorescence detection after monobromobimane derivatization. J Chromatogr A 1107:52–58

    Article  CAS  PubMed  Google Scholar 

  14. Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22

    Article  PubMed  Google Scholar 

  15. Schagger H, Vonjagow G (1987) Tricine sodium dodecyl-sulfate polyacrylamide-gel electrophoresis for the separation of proteins in the range from 1-kDa to 100-kDa. Anal Biochem 166:368–379

    Article  CAS  PubMed  Google Scholar 

  16. Borovicka J, Kotrba P, Gryndler M, Mihaljevic M, Randa Z, Rohovec J et al (2010) Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Sci Total Environ 408:2733–2744

    Article  CAS  PubMed  Google Scholar 

  17. Gao YX, Chen CY, Chai ZF, Zhao JJ, Liu J, Zhang PQ et al (2002) Detection of metalloproteins in human liver cytosol by synchrotron radiation X-ray fluorescence combined with gel filtration chromatography and isoelectric focusing separation. Analyst 127:1700–1704

    Article  CAS  PubMed  Google Scholar 

  18. Gao YX, Liu YB, Chen CY, Li B, He W, Huang YY et al (2005) Combination of synchrotron radiation X-ray fluorescence with isoelectric focusing for study of metalloprotein distribution in cytosol of hepatocellular carcinoma and surrounding normal tissues. J Anal At Spectrom 20:473–475

    Article  CAS  Google Scholar 

  19. Nordberg M (1991) Isoelectric focusing of mammalian metallothioneins. Methods Enzymol 205:247–252

    Article  CAS  PubMed  Google Scholar 

  20. Felleybosco E, Hunziker PE, Savolainen H (1990) Isoelectric focusing of urinary metallothionein. Scand J Clin Lab Invest 50:343–346

    CAS  Google Scholar 

  21. Chen ZJ, Li XF, Shi DJ, Li LY, Ru BG (1999) Studies on the purification, characterization and conformation in solution of metallothionein-like substance from Synechocystis 6803. Acta Bot Sin 41:150–155

    Google Scholar 

  22. Jorgenson JW, Lukacs KD (1981) Zone electrophoresis in open-tubular glass-capillaries. Anal Chem 53:1298–1302

    Article  CAS  Google Scholar 

  23. Beattie JH (1998) Strategies for the qualitative and quantitative analysis of metallothionein isoforms by capillary electrophoresis. Talanta 46:255–270

    Article  CAS  PubMed  Google Scholar 

  24. Beattie JH, Richards MP (1994) Separation of metallothionein isoforms by micellar electrokinetic capillary chromatography. J Chromatogr A 664:129–134

    Article  CAS  PubMed  Google Scholar 

  25. Beattie JH, Richards MP (1995) Analysis of metallothionein isoforms by capillary electrophoresis—optimization of protein separation conditions using micellar electrokinetic capillary chromatography. J Chromatogr A 700:95–103

    Article  CAS  PubMed  Google Scholar 

  26. Beattie JH, Richards MP, Self R (1993) Separation of metallothionein isoforms by capillary zone electrophoresis. J Chromatogr 632:127–135

    Article  CAS  PubMed  Google Scholar 

  27. Beattie JH, Self R, Richards MP (1995) The use of solid-phase concentrators for online preconcentration of metallothionein prior to isoform separation by capillary zone electrophoresis. Electrophoresis 16:322–328

    Article  CAS  PubMed  Google Scholar 

  28. Richards MP (1994) Application of a polyamine-coated capillary to the separation of metallothionein isoforms by capillary zone electrophoresis. J Chromatogr B Biomed Appl 657:345–355

    Article  CAS  PubMed  Google Scholar 

  29. Richards MP, Andrews GK, Winge DR, Beattie JH (1995) Separation of 3 mouse metallothionein isoforms by free-solution capillary electrophoresis (FSCE). FASEB J 9:A738–A738

    Google Scholar 

  30. Richards MP, Andrews GK, Winge DR, Beattie JH (1996) Separation of three mouse metallothionein isoforms by free-solution capillary electrophoresis. J Chromatogr B Biomed Appl 675:327–331

    Article  CAS  PubMed  Google Scholar 

  31. Richards MP, Beattie JH (1993) Characterization of metallothionein isoforms—comparison of capillary zone electrophoresis with reversed-phase high-performance liquid-chromatography. J Chromatogr 648:459–468

    Article  CAS  PubMed  Google Scholar 

  32. Richards MP, Beattie JH (1995) Comparison of different techniques for the analysis of metallothionein isoforms by capillary electrophoresis. J Chromatogr B Biomed Appl 669:27–37

    Article  CAS  PubMed  Google Scholar 

  33. Richards MP, Beattie JH, Self R (1992) Application of capillary zone electrophoresis (CZE) to the separation of metallothionein isoforms. FASEB J 6:A1093–A1093

    Google Scholar 

  34. Richards MP, Beattie JH, Self R (1993) Application of capillary zone electrophoresis to the separation of metallothionein isoforms. J Liq Chromatogr 16:2113–2128

    Article  CAS  Google Scholar 

  35. Richards MP, Huang TL (1997) Metalloprotein analysis by capillary isoelectric focusing. J Chromatogr B 690:43–54

    Article  CAS  Google Scholar 

  36. Kawata T, Nakamura S, Nakayama A, Fukuda H, Ebara M, Nagamine T et al (2006) An improved diagnostic method for chronic hepatic disorder: analyses of metallothionein isoforms and trace metals in the liver of patients with hepatocellular carcinoma as determined by capillary zone electrophoresis and inductively coupled plasma-mass spectrometry. Biol Pharm Bull 29:403–409

    Article  CAS  PubMed  Google Scholar 

  37. Kubo K, Sakita Y, Minami T (2000) Effect of heat treatment on metallothionein isoforms using capillary zone electrophoresis. Analusis 28:366–369

    Article  CAS  Google Scholar 

  38. Kubo K, Sakita Y, Okazaki Y, Otaki N, Kimura M, Minami T (1999) Identification of metallothionein isoforms on capillary zone electrophoresis by adding anti-metallothionein antibody. J Chromatogr B 736:185–190

    Article  CAS  Google Scholar 

  39. Kubo K, Sakita Y, Otaki N, Kimura M, Minami T (2000) Rapid identification of metallothionein isoforms in liver cytosol fraction by capillary zone electrophoresis using EDTA. J Chromatogr B 742:193–198

    Article  CAS  Google Scholar 

  40. Minami T, Ichida S, Kubo K (2002) Study of metallothionein using capillary zone electrophoresis. J Chromatogr B 781:303–311

    Article  CAS  Google Scholar 

  41. Minami T, Matsubara H, Ohigashi M, Kubo K, Okabe N, Okazaki Y (1996) Analysis of interaction between cadmium and metallothionein isoforms by capillary zone electrophoresis. Electrophoresis 17:1602–1606

    Article  CAS  PubMed  Google Scholar 

  42. Minami T, Miyata E, Sakamoto Y, Yamazaki H, Ichida S (2010) Induction of metallothionein in mouse cerebellum and cerebrum with low-dose thimerosal injection. Cell Biol Toxicol 26:143–152

    Article  CAS  PubMed  Google Scholar 

  43. Minami T, Sakita Y, Kub K, Okabe N, Okazaki Y, Tohno S et al (1998) Stability of metallothionein isoforms by capillary zone electrophoresis. Cell Mol Biol 44:285–292

    CAS  PubMed  Google Scholar 

  44. Minami T, Tohno Y, Okazaki Y, Kubo K, Otaki N, Kimura M (1998) Quantitation of metallothionein isoforms in mouse liver on capillary zone electrophoresis. Anal Chim Acta 372:241–247

    Article  CAS  Google Scholar 

  45. Nakamura S, Kawata T, Nakayama A, Kubo K, Minami T, Sakurai H (2004) Implication of the differential roles of metallothionein 1 and 2 isoforms in the liver of rats as determined by polyacrylamide-coated capillary zone electrophoresis. Biochem Biophys Res Commun 320:1193–1198

    Article  CAS  PubMed  Google Scholar 

  46. Okazaki Y, Namikawa K, Minami T (2000) Studies of metals and metallothionein in tissue. Yakugaku Zasshi 120:282–289

    CAS  PubMed  Google Scholar 

  47. Bordin G, Virtanen V, Rodriguez AR (1998) Characterization of the polymorphism of metallothionein by CZE with diode-array detection. Analusis 26:M61–M64

    Article  CAS  Google Scholar 

  48. Dabrio M, Virtanen V, Bordin G, Rodriguez AR (2000) Contribution to the study of complexing properties of Zn-metallothioneins by CZE-DAD. Talanta 53:587–598

    Article  CAS  PubMed  Google Scholar 

  49. Virtanen V, Bordin G (1998) Characterization of mammalian metallothionein isoforms by capillary zone electrophoresis with diode array detection using tris-borate buffer. J Liq Chromatogr Relat Technol 21:3087–3098

    Article  CAS  Google Scholar 

  50. Virtanen V, Bordin G (1999) Tricine buffer for metallothionein isoform separation by capillary zone electrophoresis. Anal Chim Acta 402:59–66

    Article  CAS  Google Scholar 

  51. Virtanen V, Bordin G, Rodriguez AR (1996) Separation of metallothionein isoforms with capillary zone electrophoresis using an uncoated capillary column—effects of pH, temperature, voltage, buffer concentration and buffer composition. J Chromatogr A 734:391–400

    Article  CAS  Google Scholar 

  52. Virtanen V, Bordin G, Rodriguez AR (1998) The influence of experimental conditions and of organic solvents as modifiers on the separation of metallothionein isoforms by capillary zone electrophoresis in an uncoated capillary column. Chromatographia 48:637–642

    Article  CAS  Google Scholar 

  53. Wilhelmsen TW, Hansen BH, Holten V, Olsvik PA, Andersen RA (2004) Improved separation of metallothionein isoforms by the presence of cyclodextrin in capillary zone electrophoresis. J Chromatogr A 1051:237–245

    Article  CAS  PubMed  Google Scholar 

  54. Wilhelmsen TW, Olsvik PA, Andersen RA (2002) Metallothioneins from horse kidney studied by separation with capillary zone electrophoresis below and above the isoelectric points. Talanta 57:707–720

    Article  CAS  PubMed  Google Scholar 

  55. Wilhelmsen TW, Olsvik PA, Teigen SW, Andersen RA (1998) Metallothionein isoforms from horse, rabbit and rat separated by capillary zone electrophoresis at low pH. Talanta 46:291–300

    Article  CAS  PubMed  Google Scholar 

  56. Krizkova S, Ryvolova M, Gumulec J, Masarik M, Adam V, Majzlik P et al (2011) Electrophoretic fingerprint metallothionein analysis as a potential prostate cancer biomarker. Electrophoresis 32:1952–1961

    Article  CAS  PubMed  Google Scholar 

  57. Ryvolova M, Hynek D, Skutkova H, Adam V, Provaznik I, Kizek R (2012) Structural changes in metallothionein isoforms revealed by capillary electrophoresis and Brdicka reaction. Electrophoresis 33:270–279

    Article  CAS  PubMed  Google Scholar 

  58. Riekkola ML (2002) Recent advances in nonaqueous capillary electrophoresis. Electrophoresis 23:3865–3883

    Google Scholar 

  59. Scriba GKE (2007) Nonaqueous capillary electrophoresis-mass spectrometry. J Chromatogr A 1159:28–41

    Google Scholar 

  60. Teng H, Yuan BQ, You TY (2010) Recent advances in application of nonaqueous capillary electrophoresis. Chin J Anal Chem38:1670–1677

    Google Scholar 

  61. Allan AK, Hawksworth GM, Woodhouse LR, Sutherland B, King JC, Beattie JH (2000) Lymphocyte metallothionein mRNA responds to marginal zinc intake in human volunteers. Br J Nutr 84:747–756

    CAS  PubMed  Google Scholar 

  62. Krizkova S, Adam V, Kizek R (2009) Study of metallothionein oxidation by using of chip CE. Electrophoresis 30:4029–4033

    Article  CAS  PubMed  Google Scholar 

  63. Krizkova S, Masarik M, Eckschlager T, Adam V, Kizek R (2010) Effects of redox conditions and zinc(II) ions on metallothionein aggregation revealed by chip capillary electrophoresis. J Chromatogr A 1217:7966–7971

    Article  CAS  PubMed  Google Scholar 

  64. Guo X, Chan HM, Guevremont R, Siu KWM (1999) Analysis of metallothioneins by means of capillary electrophoresis coupled to electrospray mass spectrometry with sheathless interfacing. Rapid Commun Mass Spectrom 13:500–507

    Article  CAS  PubMed  Google Scholar 

  65. Lavorante AF, Gine MF, Gervasio APG, Miranda CES, Fiore MF, Bellato CM et al (2003) Identification of a metallothionein in Synechococcus by capillary electrophoresis hyphenated with inductively coupled plasma mass spectrometry. Anal Sci 19:1611–1616

    Google Scholar 

  66. Alvarez-Llamas G, de la Campa MRF, Sanchez MLF, Sanz-Medel A (2002) Comparison of two CE-ICP-MS interfaces based on microflow nebulizers: application to cadmium speciation in metallothioneins using quadrupole and double focusing mass analyzers. J Anal At Spectrom 17:655–661

    Article  CAS  Google Scholar 

  67. Taylor KA, Sharp BL, Lewis DJ, Crews HM (1998) Design and characterisation of a microconcentric nebuliser interface for capillary electrophoresis-inductively coupled plasma mass spectrometry. J Anal At Spectrom 13:1095–1100

    Article  CAS  Google Scholar 

  68. Baker SA, Miller-Ihli NJ (1999) Comparison of a cross-flow and microconcentric nebulizer for chemical speciation measurements using CZE-ICP-MS. Appl Spectrosc 53:471–478

    Article  CAS  Google Scholar 

  69. B‘Hymer C, Sutton RMC, Sutton KL, Caruso JA (1999) The use of sol-gel frits to minimize suction effects in capillary electrophoresis-nebulizer interfaces for plasma spectrometry. Anal Commun 36:349–353

    Article  Google Scholar 

  70. Polec K, Szpunar J, Palacios O, Gonzalez-Duarte P, Atrian S, Lobinski R (2001) Investigation of metal binding by recombinant and native metallothioneins by capillary zone electrophoresis (CZE) coupled with inductively coupled plasma mass spectrometry (ICP-MS) via a self-aspirating total consumption micronebulizer. J Anal At Spectrom 16:567–574

    Article  CAS  Google Scholar 

  71. Alvarez-Llamas G, de la Campa MR, Sanz-Medel A (2005) An alternative interface for CE-ICP-MS cadmium speciation in metallothioneins based on volatile species generation. Anal Chim Acta 546:236–243

    Article  CAS  Google Scholar 

  72. Polec-Pawlak K, Schaumlöffel D, Szpunar J, Prange A, Lobinski R (2002) Analysis for metal complexes with metallothionein in rat liver by capillary zone electrophoresis using ICP double-focussing sector-field isotope dilution MS and electrospray MS detection. J Anal At Spectrom 17:908–912

    Article  CAS  Google Scholar 

  73. Mounicou S, Polec K, Chassaigne H, Potin-Gautier M, Lobinski R (2000) Characterization of metal complexes with metallothioneins by capillary zone electrophoresis (CZE) with ICP-MS and electrospray (ES)-MS detection. J Anal At Spectrom 15:635–642

    Article  CAS  Google Scholar 

  74. Benavente F, Andon B, Gimenez E, Olivieri AC, Barbosa J, Sanz-Nebot V (2008) A multiway approach for classification and characterization of rabbit liver apothioneins by CE-ESI-MS. Electrophoresis 29:4355–4367

    Article  CAS  PubMed  Google Scholar 

  75. Abgrall P, Gue AM (2007) Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. J Micromech Microeng 17:R15–R49

    Article  Google Scholar 

  76. Pumera M (2007) Microfluidics in amino acid analysis. Electrophoresis 28:2113–2124

    Article  CAS  PubMed  Google Scholar 

  77. Andersson H, van den Berg A (2003) Microfluidic devices for cellomics: a review. Sens Actuator B Chem 92:315–325

    Article  CAS  Google Scholar 

  78. Wang J (2002) On-chip enzymatic assays. Electrophoresis 23:713–718

    Article  CAS  PubMed  Google Scholar 

  79. Demuynck S, Grumiaux F, Mottier V, Schikorski D, Lemiere S, Lepretre A (2006) Metallothionein response following cadmium exposure in the oligochaete Eisenia fetida. Comp Biochem Physiol C Toxicol Pharmacol 144:34–46

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from CEITEC CZ.1.05/1.1.00/02.0068 is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene Kizek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Krizkova, S. et al. (2014). Modern Bioanalysis of Proteins by Electrophoretic Techniques. In: Labrou, N. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 1129. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-977-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-977-2_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-976-5

  • Online ISBN: 978-1-62703-977-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics