Skip to main content

Affinity Tags in Protein Purification and Peptide Enrichment: An Overview

  • Protocol
  • First Online:
Protein Downstream Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1129))

Abstract

The reversible interaction between an affinity ligand and a complementary receptor has been widely explored in purification systems for several biomolecules. The development of tailored affinity ligands highly specific towards particular target biomolecules is one of the options in affinity purification systems. However, both genetic and chemical modifications on proteins and peptides widen the application of affinity ligand-tag receptor pairs towards universal capture and purification strategies. In particular, this chapter will focus on two case studies highly relevant for biotechnology and biomedical areas, namely, the affinity tags and receptors employed on the production of recombinant fusion proteins and the chemical modification of phosphate groups on proteins and peptides and the subsequent specific capture and enrichment, a mandatory step before further proteomic analysis.

Ana Sofia Pina and Íris L. Batalha have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woodbury, CP (2006) Recombinant DNA basics. In: Groves MJ (ed) Pharmaceutical biotechnology, 2nd edn. Taylor & Francis Group, New York, USA, pp 31–60

    Google Scholar 

  2. Young CL, Britton ZT, Robinson AS (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J 7:620–634

    CAS  PubMed  Google Scholar 

  3. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    CAS  PubMed  Google Scholar 

  4. Malhotra A (2009) Chapter 16 tagging for protein expression. In: Richard RB, Murray PD (eds) Methods in enzymology: guide to protein purification, 2nd edn. Academic, USA, pp 239–258

    Google Scholar 

  5. Walls D, Loughran ST (2011) Tagging recombinant proteins to enhance solubility and aid purification. In: Walls D, Loughran ST (eds) Protein chromatography: methods and protocols. Humana Press, New york, USA, pp 151–175

    Google Scholar 

  6. Arnau J, Lauritzen C, Petersen GE et al (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif 48:1–13

    CAS  PubMed  Google Scholar 

  7. Nilsson J, Ståhl S, Lundeberg J et al (1997) Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr Purif 11:1–16

    CAS  PubMed  Google Scholar 

  8. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533

    CAS  PubMed  Google Scholar 

  9. Waugh DS (2011) An overview of enzymatic reagents for the removal of affinity tags. Protein Expr Purif 80:283–293

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Fong BA, Wu W-Y, Wood DW (2010) The potential role of self-cleaving purification tags in commercial-scale processes. Trends Biotechnol 28:272–279

    CAS  PubMed  Google Scholar 

  11. Li Y (2011) Self-cleaving fusion tags for recombinant protein production. Biotechnol Lett 33:869–881

    CAS  PubMed  Google Scholar 

  12. Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40

    CAS  PubMed  Google Scholar 

  13. LaVallie ER, Lu Z, Diblasio-Smith EA et al (2000) Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. In: Thorner J, Emr SD, Abelson JN (eds) Applications of chimeric genes and hybrid proteins: gene expression and protein purification. Academic, USA, pp 322–340

    Google Scholar 

  14. Kaplan W, Erhardt J, Sluis-Cremer N et al (1997) Conformational stability of pGEX-expressed Schistosoma japonicum glutathione S-transferase: a detoxification enzyme and fusion-protein affinity tag. Protein Sci 6:399–406

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Frangioni JV, Neel BG (1993) Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal Biochem 210:179–187

    CAS  PubMed  Google Scholar 

  16. Singh CR, Asano K (2007) Localization and characterization of protein–protein interaction sites. In: Jon L (ed) Methods in enzymology: translation initiation: extract systems and molecular genetics. Academic, USA, pp 139–161

    Google Scholar 

  17. Nikaido H (1994) Maltose transport system of Escherichia coli: an ABC-type transporter. FEBS Lett 346:55–58

    CAS  PubMed  Google Scholar 

  18. Kellermann OK, Ferenci T (1982) Maltose-binding protein from Escherichia coli. In: Willis AW (ed) Methods in enzymology—carbohydrate metabolism—part E. Academic, USA, pp 459–463

    Google Scholar 

  19. di Guana C, Lib P, Riggsa PD et al (1988) Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene 67:21–30

    Google Scholar 

  20. Fox JD, Waugh DS (2003) Maltose-binding protein as a solubility enhancer. In: Vaillancourt PE (ed) Methods in molecular biology—E. coli gene expression protocols. Humana Press, Totowa, NJ, pp 99–117

    Google Scholar 

  21. Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Katti SK, LeMaster DM, Eklund H (1990) Crystal structure of thioredoxin from Escherichia coli at 1.68 Å resolution. J Mol Biol 212:167–184

    CAS  PubMed  Google Scholar 

  23. LaVallie ER, DiBlasio EA, Kovacic S et al (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Nat Biotechnol 11:187–193

    CAS  Google Scholar 

  24. Marblestone JG, Edavettal SC, Lim Y et al (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15:182–189

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Li S-J, Hochstrasser M (1999) A new protease required for cell-cycle progression in yeast. Nature 398:246–251

    CAS  PubMed  Google Scholar 

  26. Panavas T, Sanders C, Butt RT (2009) SUMO fusion technology for enhanced protein production in prokaryotic and eukaryotic expression systems. In: Ulrich HD (ed) SUMO protocols methods in molecular biology. Humana Press, New York, USA, pp 303–317

    Google Scholar 

  27. Malakhov M, Mattern M, Malakhova O et al (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genomics 5:75–86

    CAS  PubMed  Google Scholar 

  28. Gusarov I, Nudler E (2001) Control of intrinsic transcription termination by N and NusA: the basic mechanisms. Cell 107:437–449

    CAS  PubMed  Google Scholar 

  29. Liu K, Hanna MM (1995) NusA contacts nascent RNA in Escherichia coli transcription complexes. J Mol Biol 247:547–558

    CAS  PubMed  Google Scholar 

  30. Cohen SE, Lewis CA, Mooney RA et al (2010) Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli. Proc Natl Acad Sci U S A 107:15517–15522

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Harrison RG (2000) Expression of soluble heterologous proteins via fusion with NusA protein. Innovations 11:4–7

    Google Scholar 

  32. Davis GD, Elisee C, Newham DM et al (1999) New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol Bioeng 65:382–388

    CAS  PubMed  Google Scholar 

  33. Nilsson B, Abrahmsén L (1990) Fusions to staphylococcal protein A. Methods Enzymol 185:144–161

    CAS  PubMed  Google Scholar 

  34. Eklund M, Axelsson L, Uhlén M et al (2002) Anti-idiotypic protein domains selected from protein A-based affibody libraries. Proteins 48:454–462

    CAS  PubMed  Google Scholar 

  35. Nilsson B, Abrahmsén L, Uhlén M (1985) Immobilization and purification of enzymes with staphylococcal protein A gene fusion vectors. EMBO J 4:1075–1080

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Nilsson B, Moks T, Jansson B et al (1987) A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng 1: 107–113

    CAS  PubMed  Google Scholar 

  37. Hedhammar M, Alm T, Gräslund T et al (2006) Single-step recovery and solid-phase refolding of inclusion body proteins using a polycationic purification tag. Biotechnol J 1:187–196

    CAS  PubMed  Google Scholar 

  38. Hedhammar M, Gräslund T, Uhlén M et al (2004) Negatively charged purification tags for selective anion-exchange recovery. Protein Eng Des Sel 17:779–786

    CAS  PubMed  Google Scholar 

  39. Porath J, Carlsson JAN, Olsson I et al (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598–599

    CAS  PubMed  Google Scholar 

  40. Hochuli E, Döbeli H, Schacher A (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr 18:177–184

    Google Scholar 

  41. Hochuli E, Bannwarth W, Dobeli H et al (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Nat Biotechnol 6:1321–1325

    CAS  Google Scholar 

  42. Block H, Maertens B, Spriestersbach A et al (2009) Immobilized-metal affinity chromatography (IMAC): a review. Methods Enzymol 463:439–473

    CAS  PubMed  Google Scholar 

  43. Gaberc-Porekar V, Menart V (2001) Perspectives of immobilized-metal affinity chromatography. J Biochem Biophys Methods 49:335–360

    CAS  PubMed  Google Scholar 

  44. Gutiérrez R, Martín del Valle EM, Galán MA (2007) Immobilized metal‐ion affinity chromatography: status and trends. Sep Purif Rev 36:71–111

    Google Scholar 

  45. Dashivets T, Wood N, Hergersberg C et al (2009) Rapid matrix-assisted refolding of histidine-tagged proteins. Chembiochem 10: 869–876

    CAS  PubMed  Google Scholar 

  46. Kato K, Sato H, Iwata H (2005) Immobilization of histidine-tagged recombinant proteins onto micropatterned surfaces for cell-based functional assays. Langmuir 21:7071–7075

    CAS  PubMed  Google Scholar 

  47. Wegner GJ, Lee HJ, Marriott G et al (2003) Fabrication of histidine-tagged fusion protein arrays for surface plasmon resonance imaging studies of protein–protein and protein–DNA interactions. Anal Chem 75:4740–4746

    CAS  PubMed  Google Scholar 

  48. Wilson DS, Nock S (2002) Functional protein microarrays. Curr Opin Chem Biol 6: 81–85

    CAS  PubMed  Google Scholar 

  49. Mooney JT, Fredericks D, Hearn MTW (2011) Use of phage display methods to identify heptapeptide sequences for use as affinity purification ‘tags’ with novel chelating ligands in immobilized metal ion affinity chromatography. J Chromatogr A 1218:92–99

    CAS  PubMed  Google Scholar 

  50. Einhauer A, Jungbauer A (2001) The FLAG™ peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods 49:455–465

    CAS  PubMed  Google Scholar 

  51. Evan GI, Lewis GK, Ramsay G et al (1985) Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 5:3610–3616

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Chatterjee DK, Esposito D (2006) Enhanced soluble protein expression using two new fusion tags. Protein Expr Purif 46:122–129

    CAS  PubMed  Google Scholar 

  53. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    CAS  PubMed  Google Scholar 

  54. Burgess RR, Thompson NE (2002) Advances in gentle immunoaffinity chromatography. Curr Opin Biotechnol 13:304–308

    CAS  PubMed  Google Scholar 

  55. Thompson NE, Arthur TM, Burgess RR (2003) Development of an epitope tag for the gentle purification of proteins by immunoaffinity chromatography: application to epitope-tagged green fluorescent protein. Anal Biochem 323:171–179

    CAS  PubMed  Google Scholar 

  56. Edwards AM, Darst SA, Feaver WJ et al (1990) Purification and lipid-layer crystallization of yeast RNA polymerase II. Proc Natl Acad Sci U S A 87:2122–2126

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Duellman SJ, Thompson NE, Burgess RR (2004) An epitope tag derived from human transcription factor IIB that reacts with a polyol-responsive monoclonal antibody. Protein Expr Purif 35:147–155

    CAS  PubMed  Google Scholar 

  58. Kim JS, Raines RT (1993) Ribonuclease S-peptide as a carrier in fusion proteins. Protein Sci 2:348–356

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Karpeisky MY, Senchenko VN, Dianova MV et al (1994) Formation and properties of S-protein complex with S-peptide-containing fusion protein. FEBS Lett 339:209–212

    CAS  PubMed  Google Scholar 

  60. Vaillancourt P, Zheng C-F, Hoang DQ et al (2000) Affinity purification of recombinant proteins fused to calmodulin or to calmodulin-binding peptides. In: Thorner J, Emr SD, Abelson JN (eds) Methods in enzymology. Academic, USA, pp 340–362

    Google Scholar 

  61. Melkko S, Neri D (2003) Calmodulin as an affinity purification tag. In: Vaillancourt P (ed) Methods in molecular biology—E. coli gene expression protocols. Academic, Totowa, NJ, pp 69–77

    Google Scholar 

  62. Stofko-Hahn RE, Carr DW, Scott JD (1992) A single step purification for recombinant proteins. Characterization of a microtubule associated protein (MAP 2) fragment which associates with the type II cAMP-dependent protein kinase. FEBS Lett 302:274–278

    CAS  PubMed  Google Scholar 

  63. Zheng C-F, Simcox T, Xu L et al (1997) A new expression vector for high level protein production, one step purification and direct isotopic labeling of calmodulin-binding peptide fusion proteins. Gene 186: 55–60

    CAS  PubMed  Google Scholar 

  64. Neri D, de Lalla C, Petrul H et al (1995) Calmodulin as a versatile tag for antibody fragments. Nat Biotechnol 13:373–377

    CAS  Google Scholar 

  65. Schmidt TGM, Skerra A (1993) The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Eng 6:109–122

    CAS  PubMed  Google Scholar 

  66. Skerra A, Schmidt TGM (2000) Use of the Strep-tag and streptavidin for detection and purification of recombinant proteins. In: Jeremy Thorner SDEJNA (ed) Methods in enzymology: applications of chimeric genes and hybrid proteins part a: gene expression and protein purification. Academic, USA, pp 271–304

    Google Scholar 

  67. Schmidt TGM, Koepke J, Frank R et al (1996) Molecular interaction between the strep-tag affinity peptide and its cognate target, streptavidin. J Mol Biol 255:753–766

    CAS  PubMed  Google Scholar 

  68. Korndörfer IP, Skerra A (2002) Improved affinity of engineered streptavidin for the Strep-tag II peptide is due to a fixed open conformation of the lid-like loop at the binding site. Protein Sci 11:883–893

    PubMed Central  PubMed  Google Scholar 

  69. Voss S, Skerra A (1997) Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng 10:975–982

    CAS  PubMed  Google Scholar 

  70. Schmidt TGM, Skerra A (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2:1528–1535

    CAS  PubMed  Google Scholar 

  71. Keefe AD, Wilson DS, Seelig B et al (2001) One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-tag. Protein Expr Purif 23:440–446

    CAS  PubMed  Google Scholar 

  72. Wilson DS, Keefe AD, Szostak JW (2001) The use of mRNA display to select high-affinity protein-binding peptides. Proc Natl Acad Sci U S A 98:3750–3755

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Choi S II, Song HW, Moon JW et al (2001) Recombinant enterokinase light chain with affinity tag: expression from Saccharomyces cerevisiae and its utilities in fusion protein technology. Biotechnol Bioeng 75:718–724

    CAS  PubMed  Google Scholar 

  74. Dougherty WG, Carrington JC, Cary SM et al (1988) Biochemical and mutational analysis of a plant virus polyprotein cleavage site. EMBO J 7:1281–1287

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Jenny RJ, Mann KG, Lundblad RL (2003) A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Protein Expr Purif 31:1–11

    CAS  PubMed  Google Scholar 

  76. Chang J-Y (1985) Thrombin specificity. Eur J Biochem 151:217–224

    CAS  PubMed  Google Scholar 

  77. Yuan L-D, Hua Z-C (2002) Expression, purification, and characterization of a biologically active bovine enterokinase catalytic subunit in Escherichia coli. Protein Expr Purif 25:300–304

    CAS  PubMed  Google Scholar 

  78. Tichy A, Salovska B, Rehulka P et al (2011) Phosphoproteomics: searching for a needle in a haystack. J Proteomics 74:2786–2797

    CAS  PubMed  Google Scholar 

  79. Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. Proteomics 9:1451–1468

    CAS  PubMed  Google Scholar 

  80. Witze ES, Old WM, Resing KA et al (2007) Mapping protein post-translational modifications with mass spectrometry. Nat Methods 4:798–806

    CAS  PubMed  Google Scholar 

  81. Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7:391–403

    CAS  PubMed  Google Scholar 

  82. Reinders J, Sickmann A (2005) State-of-the-art in phosphoproteomics. Proteomics 5: 4052–4061

    CAS  PubMed  Google Scholar 

  83. Paradela A, Albar JP (2008) Advances in the analysis of protein phosphorylation. J Proteome Res 7:1809–1818

    CAS  PubMed  Google Scholar 

  84. Harsha HC, Pandey A (2010) Phosphoproteomics in cancer. Mol Oncol 4:482–495

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Højlund K, Wrzesinski K, Larsen PM et al (2003) Proteome analysis reveals phosphorylation of ATP synthase β-subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes. J Biol Chem 278:10436–10442

    PubMed  Google Scholar 

  86. Levitan IB (1994) Modulation of ion channels by protein phosphorylation and dephosphorylation. Annu Rev Physiol 56: 193–212

    CAS  PubMed  Google Scholar 

  87. Davis MJ, Wu X, Nurkiewicz TR et al (2001) Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol Heart Circ Physiol 281:H1835–H1862

    CAS  PubMed  Google Scholar 

  88. Gloeckner CJ, Boldt K, von Zweydorf F et al (2010) Phosphopeptide analysis reveals two discrete clusters of phosphorylation in the N-terminus and the Roc domain of the Parkinson-disease associated protein kinase LRRK2. J Proteome Res 9:1738–1745

    CAS  PubMed  Google Scholar 

  89. Hanger DP, Anderton BH, Noble W (2009) Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15:112–119

    CAS  PubMed  Google Scholar 

  90. Schwarz E, Bahn S (2008) Biomarker discovery in psychiatric disorders. Electrophoresis 29:2884–2890

    CAS  PubMed  Google Scholar 

  91. Mann M, Ong S-E, Grønborg M et al (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20:261–268

    CAS  PubMed  Google Scholar 

  92. Schmidt SR, Schweikart F, Andersson ME (2007) Current methods for phosphoprotein isolation and enrichment. J Chromatogr B 849:154–162

    CAS  Google Scholar 

  93. Batalha IL, Lowe CR, Roque ACA (2012) Platforms for enrichment of phosphorylated proteins and peptides in proteomics. Trends Biotechnol 30:100–110

    CAS  PubMed  Google Scholar 

  94. Byford MF (1991) Rapid and selective modification of phosphoserine residues catalysed by Ba2+ ions for their detection during peptide microsequencing. Biochem J 280:261–265

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Meyer HE, Hoffmann-Posorske E, Korte H et al (1986) Sequence analysis of phosphoserine-containing peptides. Modification for picomolar sensitivity. FEBS Lett 204:61–66

    CAS  PubMed  Google Scholar 

  96. Oda Y, Nagasu T, Chait BT (2001) Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol 19:379–382

    CAS  PubMed  Google Scholar 

  97. Goshe MB, Conrads TP, Panisko EA et al (2001) Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Anal Chem 73:2578–2586

    CAS  PubMed  Google Scholar 

  98. Rybak J-N, Scheurer SB, Neri D et al (2004) Purification of biotinylated proteins on streptavidin resin: a protocol for quantitative elution. Proteomics 4:2296–2299

    CAS  PubMed  Google Scholar 

  99. Adamczyk M, Gebler JC, Wu J (2001) Selective analysis of phosphopeptides within a protein mixture by chemical modification, reversible biotinylation and mass spectrometry. Rapid Commun Mass Spectrom 15:1481–1488

    CAS  PubMed  Google Scholar 

  100. Van der Veken P, Dirksen EHC, Ruijter E et al (2005) Development of a Novel Chemical Probe for the Selective Enrichment of Phosphorylated Serine- and Threonine-Containing Peptides. Chembiochem 6:2271–2280

    PubMed  Google Scholar 

  101. McLachlin DT, Chait BT (2003) Improved β-elimination-based affinity purification strategy for enrichment of phosphopeptides. Anal Chem 75:6826–6836

    CAS  PubMed  Google Scholar 

  102. Thaler F, Valsasina B, Baldi R et al (2003) A new approach to phosphoserine and phosphothreonine analysis in peptides and proteins: chemical modification, enrichment via solid-phase reversible binding, and analysis by mass spectrometry. Anal Bioanal Chem 376:366–373

    CAS  PubMed  Google Scholar 

  103. Qian W-J, Goshe MB, Camp DG II et al (2003) Phosphoprotein isotope-coded solid-phase tag approach for enrichment and quantitative analysis of phosphopeptides from complex mixtures. Anal Chem 75(5441):5450

    Google Scholar 

  104. Knight ZA, Schilling B, Row RH et al (2003) Phosphospecific proteolysis for mapping sites of protein phosphorylation. Nat Biotechnol 21:1047–1054

    CAS  PubMed  Google Scholar 

  105. Ahn YH, Ji ES, Lee JY et al (2007) Coupling of TiO2-mediated enrichment and on-bead guanidinoethanethiol labeling for effective phosphopeptide analysis by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 21:3987–3994

    CAS  PubMed  Google Scholar 

  106. Ahn YH, Ji ES, Kwon KH et al (2007) Protein phosphorylation analysis by site-specific arginine-mimic labeling in gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem 370:77–86

    CAS  PubMed  Google Scholar 

  107. Stevens SM Jr, Chung AY, Chow MC et al (2005) Enhancement of phosphoprotein analysis using a fluorescent affinity tag and mass spectrometry. Rapid Commun Mass Spectrom 19:2157–2162

    CAS  PubMed  Google Scholar 

  108. Jalili PR, Sharma D, Ball HL (2007) Enhancement of ionization efficiency and selective enrichment of phosphorylated peptides from complex protein mixtures using a reversible poly-histidine tag. J Am Soc Mass Spectrom 18:1007–1017

    CAS  PubMed  Google Scholar 

  109. Jalili PR, Ball HL (2008) Novel reversible biotinylated probe for the selective enrichment of phosphorylated peptides from complex mixtures. J Am Soc Mass Spectrom 19:741–750

    CAS  PubMed  Google Scholar 

  110. Thompson AJ, Hart SR, Franz C et al (2003) Characterization of protein phosphorylation by mass spectrometry using immobilized metal ion affinity chromatography with on-resin β-elimination and Michael addition. Anal Chem 75:3232–3243

    CAS  PubMed  Google Scholar 

  111. Zhou H, Watts JD, Aebersold R (2001) A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol 19:375–378

    CAS  PubMed  Google Scholar 

  112. Bodenmiller B, Mueller LN, Pedrioli PGA et al (2007) An integrated chemical, mass spectrometric and computational strategy for (quantitative) phosphoproteomics: application to Drosophila melanogaster Kc167 cells. Mol Biosyst 3:275–286

    CAS  PubMed  Google Scholar 

  113. Tao WA, Wollscheid B, O’Brien R et al (2005) Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry. Nat Methods 2:591–598

    CAS  PubMed  Google Scholar 

  114. Ullmann A (1984) One-step purification of hybrid proteins which have β-galactosidase activity. Gene 29:27–31

    CAS  PubMed  Google Scholar 

  115. Dykes CW, Bookless AB, Coomber BA et al (1988) Expression of atrial natriuretic factor as a cleavable fusion protein with chloramphenicol acetyltransferase in Escherichia coli. Eur J Biochem 174:411–416

    CAS  PubMed  Google Scholar 

  116. Sjölander A, Nygren P-Å, Ståhl S et al (1997) The serum albumin-binding region of streptococcal protein G: a bacterial fusion partner with carrier-related properties. J Immunol Methods 201:115–123

    PubMed  Google Scholar 

  117. Anba J, Baty D, Lloubès R et al (1987) Expression vector promoting the synthesis and export of the human growth-hormone-releasing factor in Escherichia coli. Gene 53:219–226

    CAS  PubMed  Google Scholar 

  118. Tomme P, Boraston A, McLean B et al (1998) Characterization and affinity applications of cellulose-binding domains. J Chromatogr B Biomed Sci Appl 715:283–296

    CAS  PubMed  Google Scholar 

  119. Luojing C, Ford C, Nikolov Z (1991) Adsorption to starch of a β-galactosidase fusion protein containing the starch-binding region of Aspergillus glucoamylase. Gene 99:121–126

    Google Scholar 

  120. Ong E, Greenwood JM, Gilkes NR et al (1989) The cellulose-binding domains of cellulases: tools for biotechnology. Trends Biotechnol 7:239–243

    CAS  Google Scholar 

  121. Thorn KS, Naber N, Matuska M et al (2000) A novel method of affinity-purifying proteins using a bis-arsenical fluorescein. Protein Sci 9:213–217

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Cℏaga G, Bochkariov DE, Jokhadze GG et al (1999) Natural poly-histidine affinity tag for purification of recombinant proteins on cobalt(II)-carboxymethylaspartate crosslinked agarose. J Chromatogr A 864:247–256

    Google Scholar 

  123. Sassenfeld HM, Brewer SJ (1984) A polypeptide fusion designed for the purification of recombinant proteins. Nat Biotechnol 2:76–81

    CAS  Google Scholar 

  124. Stubenrauch K, Bachmann A, Rudolph R et al (2000) Purification of a viral coat protein by an engineered polyionic sequence. J Chromatogr B Biomed Sci Appl 737:77–84

    CAS  PubMed  Google Scholar 

  125. Zhao BJ, Ford CF, Glatz CE et al (1990) Polyelectrolyte precipitation of β-galactosidase fusions containing poly-aspartic acid tails. J Biotechnol 14:273–283

    CAS  PubMed  Google Scholar 

  126. Dalboge H, Dahl H-HM, Pedersen J et al (1987) A novel enzymatic method for production of authentic hGH from an Escherichia coli produced hGH-precursor. Nat Biotechnol 5:161–164

    Google Scholar 

  127. Persson M, Bergstrand MG, Bülow L et al (1988) Enzyme purification by genetically attached polycysteine and polyphenylalanine affinity tails. Anal Biochem 172:330–337

    CAS  PubMed  Google Scholar 

  128. Hopp TP, Prickett KS, Price VL et al (1988) A short polypeptide marker sequence useful for recombinant protein identification and purification. Nat Biotechnol 6:1204–1210

    CAS  Google Scholar 

  129. Schatz PJ (1993) Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Nat Biotechnol 11:1138–1143

    CAS  Google Scholar 

  130. Lamla T, Stiege W, Erdmann VA (2002) An improved protein bioreactor. Mol Cell Proteomics 1:466–471

    CAS  PubMed  Google Scholar 

  131. Smith JC, Derbyshire RB, Cook E et al (1984) Chemical synthesis and cloning of a poly(arginine)-coding gene fragment designed to aid polypeptide purification. Gene 32:321–327

    CAS  PubMed  Google Scholar 

  132. Goeddel DV, Kleid DG, Bolivar F et al (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci U S A 76:106–110

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Moks T, Abrahmsen L, Holmgren E et al (1987) Expression of human insulin-like growth factor I in bacteria: use of optimized gene fusion vectors to facilitate protein purification. Biochemistry 26:5239–5244

    CAS  PubMed  Google Scholar 

  134. Huston JS, Levinson D, Mudgett-Hunter M et al (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A 85:5879–5883

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from Fundação para a Ciência e a Tecnologia through grant no. PEst-C/EQB/LA0006/2011 and contract nos. PTDC/EBB-BIO/102163/2008, PTDC/EBB-BIO/098961/2008, PTDC/EBB-BIO/118317/2010, SFRH/BD/48804/2008 for A.S.P., and SFRH/BD/64427/2009 for I.L.B., as well as to Santander Totta Bank—Universidade Nova de Lisboa for the Scientific Award 2009/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cecília A. Roque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pina, A.S., Batalha, Í.L., Roque, A.C.A. (2014). Affinity Tags in Protein Purification and Peptide Enrichment: An Overview. In: Labrou, N. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 1129. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-977-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-977-2_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-976-5

  • Online ISBN: 978-1-62703-977-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics