Skip to main content

G Protein-Coupled Receptors: Research and Methods in the Post-Genomic Era

  • Protocol
  • First Online:
G Protein-Coupled Receptor Genetics

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1037 Accesses

Abstract

G protein-coupled receptors (GPCRs) are the number one class of receptor targets for the pharmacotherapy of many pathological and disease states. This chapter presents an overview of the chapter topics presented in this new volume on the genetics of GPCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Collins F (2010) Has the revolution arrived? Nature 464:764–765

    Article  Google Scholar 

  2. Lin HH (2013) G-protein-coupled receptors and their (Bio) chemical significance win 2012 Nobel Prize in Chemistry. Biomed J 36:118–124

    Article  PubMed  Google Scholar 

  3. Stevens CW (2014) Genetics of G protein-coupled receptor research and methods in the post-genomic era. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 3–22

    Google Scholar 

  4. Fredriksson R, Lagerström MC, Lundin LG (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  CAS  PubMed  Google Scholar 

  5. Stäubert C, Le Duc D, Schöneberg T (2014) Examining the dynamic evolution of G protein-coupled receptors. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 23–43

    Google Scholar 

  6. Hereld D, Devreotes PN (1992) The cAMP receptor family of Dictyostelium. Int Rev Cytol 137B:35–47

    CAS  PubMed  Google Scholar 

  7. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  CAS  PubMed  Google Scholar 

  8. Spiess K, Rosenkilde MM (2014) Functional properties of virus-encoded and virus-regulated G protein-coupled receptors. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 45–65

    Google Scholar 

  9. Montaner S, Kufareva I, Abagyan R, Gutkind JS (2013) Molecular mechanisms deployed by virally encoded G protein-coupled receptors in human diseases. Annu Rev Pharmacol Toxicol 53:331–354

    Article  CAS  PubMed  Google Scholar 

  10. White PC, McMillan DR (2014) Discovery and function of the very large G protein-coupled receptor. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 67–83

    Google Scholar 

  11. Suwa M, Sugihara M, Ono Y (2011) Functional and structural overview of G-protein-coupled receptors comprehensively obtained from genome sequences. Pharmaceuticals 4: 652–664

    Article  CAS  Google Scholar 

  12. Vardy E, Stevens CW, Roth BL (2014) Functional evolution of the opioid family G protein-coupled receptors. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 85–104

    Google Scholar 

  13. Stevens CW (2003) Opioid research in amphibians: a unique perspective on mechanisms of opioid analgesia and the evolution of opioid receptors. Rev Analg 7:69–82

    Article  CAS  Google Scholar 

  14. Stevens CW (2004) Opioid research in amphibians: an alternative pain model yielding insights on the evolution of opioid receptors. Brain Res Brain Res Rev 46:204–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Stevens CW (2005) Molecular evolution of vertebrate opioid receptor proteins: a preview. In: Capasso A (ed) Recent developments in pain research. Research Signpost, Kerala

    Google Scholar 

  16. Stevens CW (2006) Opioid analgesia research in amphibians: from behavioral assay to cloning opioid receptor genes. Proc Annu Conf Assoc Reptile Amphib Vet 13:9–15

    Google Scholar 

  17. Stevens CW, Brasel CM, Mohan S (2007) Cloning and bioinformatics of amphibian mu, delta, kappa, and nociceptin opioid receptors expressed in brain tissue: evidence for opioid receptor divergence in mammals. Neurosci Lett 419:189–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Stevens CW (2009) The evolution of vertebrate opioid receptors. Front Biosci 14: 1247–1269

    Article  CAS  Google Scholar 

  19. Stevens CW (2011) Deciphering the molecular evolution of vertebrate G protein-coupled receptors. In: Stevens CW (ed) Methods for the discovery and characterization of G protein-coupled receptors, vol 60, Neuromethods. Humana Press/Springer Science+Business Media, LLC, New York, pp 71–102

    Google Scholar 

  20. Sundström G, Dreborg S, Larhammar D (2010) Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates. PLoS One 5:e10512

    Article  PubMed Central  PubMed  Google Scholar 

  21. Larhammar D, Dreborg S, Larsson TA et al (2009) Early duplications of opioid receptor and peptide genes in vertebrate evolution. Ann N Y Acad Sci 1163:451–453

    Article  PubMed  Google Scholar 

  22. Dreborg S, Sundström G, Larsson TA et al (2008) Evolution of vertebrate opioid receptors. Proc Natl Acad Sci U S A 105: 15487–15492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Noonan JP, Coop G, Kudaravalli S, Smith D et al (2006) Sequencing and analysis of Neanderthal genomic DNA. Science 314: 1113–1118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Meyer M, Kircher M, Gansauge MT et al (2012) A high-coverage genome sequence from an archaic Denisovan individual. Science 338:222–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Willets JM, Nash C (2014) Investigation of G protein-coupled receptor function and regulation using antisense. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 105–126

    Google Scholar 

  26. Van Oekelen D, Luyten WH, Leysen JE (2003) Ten years of antisense inhibition of brain G-protein-coupled receptor function. Brain Res Brain Res Rev 42:123–142

    Article  PubMed  Google Scholar 

  27. Sandrasagra A, Tang L, Leonard SA et al (2001) RASONs: a novel antisense oligonucleotide therapeutic approach for asthma. Expert Opin Biol Ther 1:979–983

    Article  CAS  PubMed  Google Scholar 

  28. Altosaar K, Pétrin D, Devost D, Hébert TE (2014) Signalosome profiling reveals allosteric interactions between G protein-coupled receptors. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 127–146

    Google Scholar 

  29. Garland SL (2013) Are GPCRs still a source of new targets? J Biomol Screen: Aug 14, epub ahead of print

    Google Scholar 

  30. Masseck OA, Mark MD, Herlitze S (2014) Use of optogenetic approaches to control intracellular signaling of G protein-coupled receptors. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 149–160

    Google Scholar 

  31. Smith KS, Graybiel AM (2013) Using optogenetics to study habits. Brain Res 1511: 102–114

    Article  CAS  PubMed  Google Scholar 

  32. Steinberg EE, Janak PH (2013) Establishing causality for dopamine in neural function and behavior with optogenetics. Brain Res 1511:46–64

    Article  CAS  PubMed  Google Scholar 

  33. Porcellini A, Iacovelli L, De Blasi A (2014) Viral infection for G protein-coupled receptor expression in eukaryotic cells. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 161–175

    Google Scholar 

  34. Ali M, Lemoine NR, Ring CJ (1994) The use of DNA viruses as vectors for gene therapy. Gene Ther 1:367–384

    CAS  PubMed  Google Scholar 

  35. Seregin SS, Amalfitano A (2009) Overcoming pre-existing adenovirus immunity by genetic engineering of adenovirus-based vectors. Expert Opin Biol Ther 9:1521–1531

    Article  CAS  PubMed  Google Scholar 

  36. Sawyer GW, Ehlert FJ (2014) Using in vitro mutagenesis to characterize structure-function relationships in G protein-coupled receptors. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 177–195

    Google Scholar 

  37. Perez-Aguilar JM, Xi J, Matsunaga F (2013) A computationally designed water-soluble variant of a G-protein-coupled receptor: the human mu opioid receptor. PLoS One 8:e66009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Polites HG, Economides KD (2014) The CRE Luc mouse model for bioimaging ligand activation of G protein-coupled receptors. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 197–217

    Google Scholar 

  39. Scherrer G, Tryoen-Tóth P, Filliol D et al (2006) Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proc Natl Acad Sci U S A 103:9691–9696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Karnik SS, Unal H (2014) Inducing conformational changes in G protein-coupled receptors by domain coupling. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 219–237

    Google Scholar 

  41. Irannejad R, Tomshine JC, Tomshine JR et al (2013) Conformational biosensors reveal GPCR signalling from endosomes. Nature 495:534–538

    Article  CAS  PubMed  Google Scholar 

  42. Trehan A, Jonas K, Huhtaniemi I, Hanyaloglu A, Rivero-Müller A (2014) Rescue of defective G protein–coupled receptor function by intermolecular cooperation. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 239–255

    Google Scholar 

  43. Maya-Núñez G, Ulloa-Aguirre A, Janovick JA et al (2012) Pharmacological chaperones correct misfolded GPCRs and rescue function: protein trafficking as a therapeutic target. Subcell Biochem 63:263–289

    Article  PubMed  Google Scholar 

  44. Huang Y, Cavanaugh A, Breitwieser GE (2011) Regulation of stability and trafficking of calcium-sensing receptors by pharmacologic chaperones. Adv Pharmacol 62:143–173

    Article  CAS  PubMed  Google Scholar 

  45. Gurevich VV, Gurevich EV (2014) Design of super-arrestins for gene therapy of diseases associated with excessive signaling of G protein-coupled receptors. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 257–285

    Google Scholar 

  46. Ibrahim IA, Kurose HJ (2012) β-arrestin-mediated signaling improves the efficacy of therapeutics. J Pharmacol Sci 118:408–412

    Article  CAS  PubMed  Google Scholar 

  47. Lymperopoulos A (2012) Beta-arrestin biased agonism/antagonism at cardiovascular seven transmembrane-spanning receptors. Curr Pharm Des 18:192–198

    Article  CAS  PubMed  Google Scholar 

  48. Devaki R (2014) Importance of G protein-coupled receptor genetics in clinical medicine. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 289–298

    Google Scholar 

  49. Thompson MD, Percy ME, McIntyre Burnham W et al (2008) G protein-coupled receptors disrupted in human genetic disease. Methods Mol Biol 448:109–137

    Article  CAS  PubMed  Google Scholar 

  50. O’Hayre M, Vázquez-Prado J, Kufareva I (2013) The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer 13:412–424

    Article  PubMed  Google Scholar 

  51. Jose PA, Villar VAM, Weir MR, Felder RA (2014) Pharmacogenomics of G protein-coupled receptor signaling and other pathways in essential hypertension. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 299–312

    Google Scholar 

  52. Thompson MD, Siminovitch KA, Cole DE (2008) G protein-coupled receptor pharmacogenetics. Methods Mol Biol 448:139–185

    Article  CAS  PubMed  Google Scholar 

  53. Johnson JA, Liggett SB (2011) Cardiovascular pharmacogenomics of adrenergic receptor signaling: clinical implications and future directions. Clin Pharmacol Ther 89:366–378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Karamitri A, Jockers R (2014) Exon sequencing of G protein-coupled receptor genes and perspectives for disease treatment. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 313–332

    Google Scholar 

  55. Nakamura K, Kodera H, Akita T et al (2013) De novo mutations in GNAO1, encoding a Gαo subunit of heterotrimeric G proteins, cause epileptic encephalopathy. Am J Hum Genet: Aug 27, epub ahead of print

    Google Scholar 

  56. Teer JK, Mullikin JC (2010) Exome sequencing: the sweet spot before whole genomes. Hum Mol Genet 19:R145–R151

    Article  CAS  PubMed  Google Scholar 

  57. Leosco D, Femminella GD, de Lucia C, Rengo G (2014) Gene therapy using G protein-coupled receptors for the treatment of cardiovascular disease. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York NY, pp 333–345

    Google Scholar 

  58. Cannavo A, Rengo G, Liccardo D et al (2013) β1-adrenergic receptor and sphingosine-1-phosphate receptor 1 reciprocal down-regulation influences cardiac hypertrophic response and progression toward heart failure: protective role of S1PR1 cardiac gene therapy. Circulation: Aug 22. epub ahead of print

    Google Scholar 

  59. Russell JL, Goetsch SC, Aguilar HR et al (2012) Regulated expression of pH sensing G protein-coupled receptor-68 identified through chemical biology defines a new drug target for ischemic heart disease. ACS Chem Biol 7:1077–1083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Yekkirala AS (2014) Novel mechanisms of G protein-coupled receptor oligomer and ion channel interactions in nociception. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 347–364

    Google Scholar 

  61. Bíró T, Tóth BI, Marincsák R et al (2007) TRP channels as novel players in the pathogenesis and therapy of itch. Biochim Biophys Acta 1772:1004–1021

    Article  PubMed  Google Scholar 

  62. Garcia MI, Fernandez-Vallone V, Vassart G (2014) Discovery and characterization of leucine-rich repeat-containing G protein-coupled receptors. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media, LLC, New York, pp 365–388

    Google Scholar 

  63. Styrkarsdottir U, Thorleifsson G, Sulem P et al (2013) Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits. Nature 497:517–520

    Article  CAS  PubMed  Google Scholar 

  64. Hsu HC, Liu YS, Tseng KC et al (2013) Overexpression of LGR5 correlates with resistance to 5-FU-based chemotherapy in colorectal cancer. Int J Colorectal Dis: Jun 20, epub ahead of print

    Google Scholar 

  65. Saigusa S, Inoue Y, Tanaka K et al (2013) Significant correlation between LKB1 and LGR5 gene expression and the association with poor recurrence-free survival in rectal cancer after preoperative chemoradiotherapy. J Cancer Res Clin Oncol 139:131–138

    Article  CAS  PubMed  Google Scholar 

  66. Nakata S, Campos B, Bageritz J et al (2013) LGR5 is a marker of poor prognosis in glioblastoma and is required for survival of brain cancer stem-like cells. Brain Pathol 23:60–72

    Article  CAS  PubMed  Google Scholar 

  67. Collette KM, Doze VA, Perez DM (2014) The role of G protein-coupled receptors in adult neurogenesis. In: Stevens CW (ed) Genetics of G protein-coupled receptors – research and methods in the post-genomic era. Methods in Pharmacology and Toxicology, Humana Press/Springer Science+Business Media LLC, New York NY, pp 389–411

    Google Scholar 

  68. Malberg JE (2004) Implications of adult hippocampal neurogenesis in antidepressant action. J Psychiatry Neurosci 29:196–205

    PubMed Central  PubMed  Google Scholar 

  69. Hanson ND, Owens MJ, Nemeroff CB (2011) Depression, antidepressants, and neurogenesis: a critical reappraisal. Neuropsychopharmacology 36:2589–2602

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to dedicate this volume to the memory of my mother, who is unfortunately losing hers. Much appreciation goes to my primary and secondary offspring, who were forced to face unpleasant circumstances but excelled in spite of them. Finally, I acknowledge the limitless support and encouragement of my significant other, the real doctor, who is my inspiration, my life, my everything.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stevens, C.W. (2014). G Protein-Coupled Receptors: Research and Methods in the Post-Genomic Era. In: Stevens, C. (eds) G Protein-Coupled Receptor Genetics. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-779-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-779-2_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-778-5

  • Online ISBN: 978-1-62703-779-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics