Skip to main content

Chromatin Immunoprecipitation

  • Protocol
  • First Online:
Functional Analysis of DNA and Chromatin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1094))

Abstract

Chromatin plays important functions in regulating many biological processes, including DNA transcription, replication, and repair. The use of chromatin immunoprecipitation (ChIP) assays has contributed enormously to identify interactions between DNA and a wide range of nuclear proteins including histones and their different posttranslational modifications as well as a variety of transcription factors. ChIP assays have been successfully used to map histone modifications and histone variants, as well as binding of transcription factors and chromatin-modifying complexes in both, specific candidate loci and the entire genome. In this chapter, we provide a brief review of the variations in ChIP assays and a detailed explanation of the basic standard ChIP protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacob Y, Stroud H, Leblanc C, Feng S et al (2010) Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases. Nature 466:987–991

    Article  PubMed  CAS  Google Scholar 

  2. Liu W, Tanasa B, Tyurina OV et al (2010) PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 466:508–512

    Article  PubMed  CAS  Google Scholar 

  3. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  PubMed  CAS  Google Scholar 

  4. Bird AW, Yu DY, Pray-Grant MG et al (2002) Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419:411–415

    Article  PubMed  CAS  Google Scholar 

  5. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  6. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    Article  PubMed  CAS  Google Scholar 

  7. O’Neill LP, Turner BM (1996) Immunoprecipitation of chromatin. Methods Enzymol 274:189–197

    Article  PubMed  Google Scholar 

  8. Zeng PY, Vakoc CR, Chen ZC et al (2006) In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques 41:694–698

    Article  PubMed  CAS  Google Scholar 

  9. Roca H, Franceschi RT (2008) Analysis of transcription factor interactions in osteoblasts using competitive chromatin immunoprecipitation. Nucleic Acids Res 36:1723–1730

    Article  PubMed  CAS  Google Scholar 

  10. Cosseau C, Grunau C (2011) Native chromatin immunoprecipitation. Methods Mol Biol 791:195–212

    Article  PubMed  CAS  Google Scholar 

  11. O’Neill LP, VerMilyea MD, Turner BM (2006) Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet 38:835–841

    Article  PubMed  Google Scholar 

  12. Acevedo LG, Iniguez AL, Holster HL et al (2007) Genome-scale ChIP-chip analysis using 10,000 human cells. Biotechniques 43:791–797

    Article  PubMed  CAS  Google Scholar 

  13. Bernstein BE, Mikkelsen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  PubMed  CAS  Google Scholar 

  14. Matarazzo MR, Lembo F, Angrisano T et al (2004) In vivo analysis of DNA methylation patterns recognized by specific proteins: coupling CHIP and bisulfite analysis. Biotechniques 37:666–668, 670, 672–673

    PubMed  CAS  Google Scholar 

  15. Rodríguez-Ubreva J, Ciudad L, Gómez-Cabrero D et al (2012) Pre-B cell to macrophage transdifferentiation without significant promoter DNA methylation changes. Nucleic Acids Res 40:1954–1968

    Article  PubMed  Google Scholar 

  16. Lee TI, Johnstone SE, Young RA (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1:729–748

    Article  PubMed  CAS  Google Scholar 

  17. Mikkelsen TS, Ku M, Jaffe DB et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Rodríguez-Ubreva, J., Ballestar, E. (2014). Chromatin Immunoprecipitation. In: Stockert, J., Espada, J., Blázquez-Castro, A. (eds) Functional Analysis of DNA and Chromatin. Methods in Molecular Biology, vol 1094. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-706-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-706-8_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-705-1

  • Online ISBN: 978-1-62703-706-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics