Skip to main content

Isotopically Nonstationary MFA (INST-MFA) of Autotrophic Metabolism

  • Protocol
  • First Online:
Plant Metabolic Flux Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1090))

Abstract

Metabolic flux analysis (MFA) is a powerful approach for quantifying plant central carbon metabolism based upon a combination of extracellular flux measurements and intracellular isotope labeling measurements. In this chapter, we present the method of isotopically nonstationary 13C MFA (INST-MFA), which is applicable to autotrophic systems that are at metabolic steady state but are sampled during the transient period prior to achieving isotopic steady state following the introduction of 13CO2. We describe protocols for performing the necessary isotope labeling experiments, sample collection and quenching, nonaqueous fractionation and extraction of intracellular metabolites, and mass spectrometry (MS) analysis of metabolite labeling. We also outline the steps required to perform computational flux estimation using INST-MFA. By combining several recently developed experimental and computational techniques, INST-MFA provides an important new platform for mapping carbon fluxes that is especially applicable to autotrophic organisms, which are not amenable to steady-state 13C MFA experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiechert W (2001) 13C Metabolic flux analysis. Metab Eng 3:195–206

    Article  PubMed  CAS  Google Scholar 

  2. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62

    Article  PubMed  Google Scholar 

  3. Nöh K, Grönke K, Luo B et al (2007) Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J Biotechnol 129:249–267

    Article  PubMed  Google Scholar 

  4. Shastri AA, Morgan JA (2007) A transient isotopic labeling methodology for 13C metabolic flux analysis of photoautotrophic microorganisms. Phytochemistry 68:2302–2312

    Article  PubMed  CAS  Google Scholar 

  5. Nöh K, Wahl A, Wiechert W (2006) Computational tools for isotopically instationary 13C labeling experiments under metabolic steady state conditions. Metab Eng 8:554–577

    Article  PubMed  Google Scholar 

  6. Wiechert W, Nöh K (2005) From stationary to instationary metabolic flux analysis. Adv Biochem Eng Biotechnol 92:145–172

    PubMed  CAS  Google Scholar 

  7. Young JD, Walther JL, Antoniewicz MR et al (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnology 99:686–699

    CAS  Google Scholar 

  8. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementray metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68–86

    Article  PubMed  CAS  Google Scholar 

  9. Arrivault S, Guenther M, Ivakov A et al (2009) Use of reverse-phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations. Plant J 59:826–839

    Article  PubMed  Google Scholar 

  10. Huege J, Sulpice R, Gibon Y et al (2007) GC-EI-TOF-MS analysis of in vivo carbon-partitioning into soluble metabolite pools of higher plants by monitoring isotope dilution after 13CO2 labelling. Phytochemistry 68:2258–2272

    Article  PubMed  CAS  Google Scholar 

  11. Römisch-Margl W, Schramek N, Radykewicz T et al (2007) 13CO2 as a universal metabolic tracer in isotopologue perturbation experiments. Phytochemistry 68:2273–2289

    Article  PubMed  Google Scholar 

  12. Sekiyama Y, Kikuchi J (2007) Towards dynamic metabolic network measurements by multi-dimensional NMR-based fluxomics. Phytochemistry 68:2320–2329

    Article  PubMed  CAS  Google Scholar 

  13. Geigenberger P, Tiessen A, Meurer J (2011) Use of non-aqueous fractionation and metabolomics to study chloroplast function in Arabidopsis. Methods Mol Biol 775:135–160

    Google Scholar 

  14. Ausloos P, Clifton CL, Lias SG et al (1999) The critical evaluation of a comprehensive mass spectral library. J Am Soc Mass Spectrom 10:287–299

    Article  PubMed  CAS  Google Scholar 

  15. Kopka J, Schauer N, Krueger S et al (2005) GMD@CSB.DB: the golm metabolome database. Bioinformatics 21:1635–1638

    Article  PubMed  CAS  Google Scholar 

  16. Kind T, Wohlgemuth G, Lee DY et al (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038–10048

    Article  PubMed  CAS  Google Scholar 

  17. Smith CA, O’Maille G, Want EJ et al (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751

    Article  PubMed  CAS  Google Scholar 

  18. Wishart DS, Tzur D, Knox C et al (2007) HMDB: the human metabolome database. Nucleic Acids Res 35:D521–D526

    Article  PubMed  CAS  Google Scholar 

  19. Horai H, Arita M, Kanaya S et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714

    Article  PubMed  CAS  Google Scholar 

  20. Gerhardt R, Heldt HW (1984) Measurement of subcellular metabolite levels in leaves by fractionation of freeze-stopped material in nonaqueous media. Plant Physiol 14:542–547

    Article  Google Scholar 

  21. Bergmeyer H (1983) Methods of enzymatic analysis. Verlag Chemie, Deerfield Beach, FL

    Google Scholar 

  22. Krueger S, Giavalisco P, Krall L et al (2011) A topological map of the compartmentalized Arabidopsis thaliana leaf metabolome. PLoS One 6:e17806

    Article  PubMed  CAS  Google Scholar 

  23. Sigma-Aldrich Enzymatic assay of phospho(enol)pyruvate carboxylase. Presented at the (1994).

    Google Scholar 

  24. Maeda H, Yoo H (2011) Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate. Nat Chem Biol 7:19–21

    Article  PubMed  CAS  Google Scholar 

  25. Li Y-T, Primate DR (1967) Studies on the glycosidases in jack bean meal. J Biol Chem 242:5474–5480

    PubMed  CAS  Google Scholar 

  26. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal Chem 79:7554–7559

    Article  PubMed  CAS  Google Scholar 

  27. Wittmann C, Hans M, Heinzle E (2002) In vivo analysis of intracellular amino acid labelings by GC/MS. Anal Biochem 307:379–382

    Article  PubMed  CAS  Google Scholar 

  28. Roessner U, Wagner C, Kopka J et al (2000) Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23:131–142

    Article  PubMed  CAS  Google Scholar 

  29. Yang L, Kasumov T, Yu L et al (2006) Metabolomic assays of the concentration and mass isotopomer distribution of gluconeogenic and citric acid cycle intermediates. Metabolomics 2:85–94

    Article  CAS  Google Scholar 

  30. Luo B, Groenke K, Takors R et al (2007) Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J Chromatogr A 1147:153–164

    Article  PubMed  CAS  Google Scholar 

  31. Young JD, Shastri AA, Stephanopoulos G et al (2011) Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis. Metab Eng 13:656–665

    Article  PubMed  CAS  Google Scholar 

  32. Fernandez CA, Des Rosiers C, Previs SF et al (1996) Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J Mass Spectrom 31:255–262

    Article  PubMed  CAS  Google Scholar 

  33. Schmidt K, Carlsen M, Nielsen J et al (1997) Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol Bioeng 55:831–840

    Article  PubMed  CAS  Google Scholar 

  34. Wiechert W, Siefke C, de Graaf AA et al (1997) Bidirectional reaction steps in metabolic networks: II. Flux estimation and statistical analysis. Biotechnol Bioeng 55:118–135

    Article  PubMed  CAS  Google Scholar 

  35. Foster LV (1986) Rank and null space calculations using matrix decomposition without column interchanges. Linear Algebra Appl 74:47–71

    Article  Google Scholar 

  36. Dulmage AL, Mendelsohn NS (1958) Coverings of bipartite graphs. Can J Math 10:517–534

    Article  Google Scholar 

  37. Pothen A, Fan CJ (1990) Computing the block triangular form of a sparse matrix. ACM Trans Math Softw 16:303–324

    Article  Google Scholar 

  38. Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic, London

    Google Scholar 

  39. Madsen K, Nielsen HB, Tigleff O (2004) Methods for non-linear least squares problems. http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3215

  40. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng 8:324–337

    Article  PubMed  CAS  Google Scholar 

  41. Conover WJ (1999) Practical nonparameteric statistics. Wiley, New York

    Google Scholar 

  42. Kitson FG, Larsen BS, McEwen CN (1996) Gas chromatography and mass spectrometry: a practical guide. Academic, San Diego

    Google Scholar 

  43. Ahn WS, Antoniewicz MR (2011) Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab Eng 13:598–609

    Article  PubMed  CAS  Google Scholar 

  44. Benkeblia N, Shinano T, Osaki M (2007) Metabolite profiling and assessment of metabolome compartmentation of soybean leaves using non-aqueous fractionation and GC-MS analysis. Metabolomics 3:297–305

    Article  CAS  Google Scholar 

  45. Rohn H, Hartmann A, Junker A et al (2012) FluxMap: a VANTED Add-on for the visual exploration of flux distributions in biological networks. BMC Syst Biol 6:33

    Article  PubMed  Google Scholar 

  46. König M, Holzhütter H-G (2010) Fluxviz—cytoscape plug-in for visualization of flux distributions in networks. Genome informatics. International Conference on Genome Informatics. 24:96–103

    Google Scholar 

  47. Hoppe A, Hoffmann S, Gerasch A et al (2011) FASIMU: flexible software for flux-balance computation series in large metabolic networks. BMC Bioinformatics 12:28

    Article  PubMed  Google Scholar 

  48. Droste P, Miebach S, Niedenführ S et al (2011) Visualizing multi-omics data in metabolic networks with the software Omix: a case study. Biosystems 105:154–161

    Article  PubMed  CAS  Google Scholar 

  49. Paley SM, Karp PD (2006) The pathway tools cellular overview diagram and Omics Viewer. Nucleic Acids Res 34:3771–3778

    Article  PubMed  CAS  Google Scholar 

  50. Matthews L, Gopinath G, Gillespie M et al (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 37:D619–D622

    Article  PubMed  CAS  Google Scholar 

  51. Kono N, Arakawa K, Ogawa R et al (2009) Pathway projector: web-based zoomable pathway browser using KEGG atlas and Google Maps API. PLoS One 4:e7710

    Article  PubMed  Google Scholar 

  52. Lee SY, Lee D-Y, Hong SH et al (2003) MetaFluxNet, a program package for metabolic pathway construction and analysis, and its use in large-scale metabolic flux analysis of Escherichia coli. Genome informatics. International Conference on Genome Informatics. 14:23–33

    Google Scholar 

  53. Rocha I, Maia P, Evangelista P et al (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4:45

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF EF-1105249 and DOE DE-SC0008118. LJJ was supported by DOE SCGF DE-AC05-06OR23100 and GAANN P200A090323.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix: Simple Network Example for INST-MFA Calculations

Appendix: Simple Network Example for INST-MFA Calculations

A simple metabolic network appears in Fig. 6 as an example of how to construct the stoichiometric matrix S, identify the set of EMUs required to simulate MIDs of measured metabolites, and set up dynamic isotopomer balances on these EMUs. Table 3 delineates the atom transitions for the network. In this network example, metabolite A is the sole substrate and metabolite G is the only final product. The intermediary metabolites B, C, D, E, and F are assumed to be at metabolic steady state but isotopically nonstationary.

Fig. 6
figure 6

Simple metabolic network used to illustrate the decomposition into EMUs. Atom transitions for the reactions in this model are given in Table 3. The network fluxes are assumed to be constant since the system is at metabolic steady state. Extracellular metabolite A is assumed to be at a fixed state of isotopic labeling to which intracellular metabolites B, C, D, E, F, and G adapt over time

Table 3 Stoichiometry and atom transitions for the reactions in the example metabolic network

The stoichiometric matrix S is shown below, which has k = 5 intermediary metabolites and j = 8 fluxes, resulting in a 5 × 8 matrix:

$$ S=\left[\begin{array}{lllllllll} 1\hfill & \hfill -1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -1\hfill & \hfill 1\hfill & \hfill 0\hfill & \hfill 0\hfill \\{\hfill} 0\hfill & \hfill 1\hfill & \hfill -1\hfill & \hfill 1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\{\hfill} 0\hfill & \hfill 0\hfill & \hfill 1\hfill & \hfill -1\hfill & \hfill 1\hfill & \hfill -1\hfill & \hfill -1\hfill & \hfill 0\hfill \\{\hfill} 0\hfill & \hfill -1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 1\hfill & \hfill 0\hfill \\{\hfill} 0\hfill & \hfill 0\hfill & \hfill 1\hfill & \hfill -1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -1\hfill \end{array}\right] $$

Therefore, S∙v = 0 is expressed in vector form as

$$ \left[\begin{array}{ll} {v}_1-{v}_2-{v}_5+{v}_6\hfill \\{\hfill} {v}_2-{v}_3+{v}_4\hfill \\{\hfill} {v}_3-{v}_4+{v}_5-{v}_6-{v}_7\hfill \\{\hfill} -{v}_2+{v}_7\hfill \\{\hfill} {v}_3-{v}_4-{v}_8\hfill \end{array}\right]=0 $$

A systematic method of EMU network decoupling in which metabolite units are grouped into mutually dependent blocks is described through this simple network example. For this example, we will set up the simplest possible model to simulate the MID of metabolite C, i.e., EMU C123. First, we need to identify all the possible EMUs that contribute to the formation of C123—in this reaction model, C123 is formed from the condensation of B12 + E1 and D12 + F1 in reactions 2 and 4, respectively. This is recorded and the process is then repeated for all new EMUs, starting with the largest EMU in size; in this case, all EMUs of size 3 have already been identified. Next, the process is repeated to determine all the EMUs of size 2 that were previously identified, starting with D12. D12 is formed from two different reactions—from B12 in reaction 5 and from C23 in reaction 3. Following this, we determine which reactions form C23; C23 is formed from D12 in reaction 4 and B2 + E1 in reaction 2. Finally, we need to determine which reactions form B12. B12 is formed from A12 and D12 in reactions 1 and 6, respectively. A12 is a network substrate and is not produced by any other reactions and D12 has already been considered in the previous step. Therefore, all EMU reactions of size 2 have been identified. The process is repeated once again for EMUs of size 1, until all the EMUs have been traced back to network substrates or previously identified EMUs. Table 4 shows the complete EMU decomposition of this system, which involves 24 EMU reactions connecting 16 EMUs.

Table 4 Complete list of EMU reactions generated for metabolite C

After EMU decomposition, the reaction network can be further decoupled into blocks, which group together minimal sets of mutually dependent metabolite units that must be solved simultaneously. Figure 7 shows the EMU network decomposition for the simple network example after block decoupling. The blocks are arranged so that each one is a self-contained subproblem, which will depend on the outputs of the previously solved blocks. Therefore, EMUs in block 1 should first be solved, then block 2, etc.

Fig. 7
figure 7

(a) EMU network decomposition for simple example network (Fig. 6) generated to simulate the labeling of metabolite C. The EMU network was decoupled based on EMU size and network connectivity. (b) EMU network decomposition for the same network using block decoupling. Subscripts refer to the atoms that are contained within the EMU

The EMU reactions obtained from network decomposition and block decoupling form the new basis for generating system equations. The decoupled blocks can be arranged into a cascaded system of ODEs with the following form, as described in Subheading 3.9:

$$ {\mathbf{ C}}_n\cdot \frac{\mathrm{ d}{\mathbf{ X}}_n}{\mathrm{ d}t}={\mathbf{ A}}_n\cdot {\mathbf{ X}}_n+{\mathbf{ B}}_n\cdot {\mathbf{ Y}}_n $$

The concentration matrix C n is a diagonal matrix whose elements are pool sizes corresponding to EMUs represented in X n . X n comprises row vectors that represent the MIDs of each EMU and dX n /dt is the time derivative of X n . Analogously, the input matrix Y n also comprises row vectors that represent MIDs of EMUs that have been previously calculated. The system matrices A n and B n come from calculating the “true” flux vectors (v) based on the chosen free fluxes (u) and null space matrix (N). Furthermore, in the decoupled blocks, the full MID of products formed from condensation reactions can be obtained from the convolution (or Cauchy product, denoted by “×”) of MIDs of preceding EMUs. In the case of C123, these MIDs are B12 and E1 or D12 and F1, i.e., C123 = B12 × E1 or C123 = D12 × F1. The following equations represent the system of ODEs for the simple network example:

$$ \begin{array}{lll}\left[\begin{array}{lll}C_{\mathrm{ C}\hfill} & \hfill 0\hfill & \hfill 0\hfill \\{\hfill} 0\hfill & \hfill {C}_{\mathrm{ B}\hfill} & \hfill 0\hfill \\{\hfill} 0\hfill & \hfill 0\hfill & \hfill {C}_{\mathrm{ D}\hfill} \end{array}\right]\left[\begin{array}{lll}\displaystyle \frac{{\mathrm{ d}\mathrm{ C}}_2}{\mathrm{ d}t\hfill} \\{\hfill}\displaystyle \frac{{\mathrm{ d}\mathrm{ B}}_2}{\mathrm{ d}t\hfill} \\{\hfill}\displaystyle \frac{{\mathrm{ d}\mathrm{ D}}_2}{\mathrm{ d}t\hfill} \end{array}\right]=\left[\begin{array}{lllll} {-v}_2-{v}_4\hfill & \hfill {v}_2\hfill & \hfill {v}_4\hfill \\{\hfill} 0\hfill & \hfill -{v}_1-{v}_6\hfill & \hfill {v}_6\hfill \\{\hfill} {v}_3\hfill & \hfill {v}_5\hfill & \hfill -{v}_3-{v}_5\hfill \end{array}\right]\left[\begin{array}{lll} {\mathrm{ C}}_2\hfill \\{\hfill} {\mathrm{ B}}_2\hfill \\{\hfill} {\mathrm{ D}}_2\hfill \end{array}\right]\cr+\left[\begin{array}{lll} 0\hfill \\{\hfill} {v}_1\hfill \\{\hfill} 0\hfill \end{array}\right]\left[{\mathrm{ A}}_2\right]\end{array} $$
$$ \left[{C}_{\mathrm{ E}}\right]\left[\frac{{\mathrm{ d}\mathrm{ E}}_1}{\mathrm{ d}t}\right]=\left[-{v}_7\right]\left[{\mathrm{ E}}_1\right]-\left[{v}_7\right]\left[{\mathrm{ D}}_2\right] $$
$$ \begin{array}{lll}\left[\begin{array}{lll} {C}_{\mathrm{ C}\hfill} & \hfill 0\hfill & \hfill 0\hfill \\{\hfill} 0\hfill & \hfill {C}_{\mathrm{ D}\hfill} & \hfill 0\hfill \\{\hfill} 0\hfill & \hfill 0\hfill & \hfill {C}_{\mathrm{ B}\hfill} \end{array}\right]\left[\begin{array}{lll} \displaystyle\frac{{\mathrm{ d}\mathrm{ C}}_3}{\mathrm{ d}t\hfill} \\{\hfill}\displaystyle \frac{{\mathrm{ d}\mathrm{ D}}_1}{\mathrm{ d}t\hfill} \\{\hfill}\displaystyle \frac{{\mathrm{ d}\mathrm{ B}}_1}{\mathrm{ d}t\hfill} \end{array}\right]=\left[\begin{array}{lll} {v}_2+{v}_4\hfill & \hfill -{v}_4\hfill & \hfill 0\hfill \\{\hfill} -{v}_3\hfill & \hfill {v}_3+{v}_5\hfill & \hfill -{v}_5\hfill \\{\hfill} 0\hfill & \hfill -{v}_6\hfill & \hfill {v}_1+{v}_6\hfill \end{array}\right]\left[\begin{array}{lll} {\mathrm{ C}}_3\hfill \\{\hfill} {\mathrm{ D}}_1\hfill \\{\hfill} {\mathrm{ B}}_1\hfill \end{array}\right] +\left[\begin{array}{cc} {{v}_2} & 0 \cr{\hfill} 0\hfill & \hfill 0\hfill \\{\hfill} 0\hfill & \hfill {v}_1\hfill \end{array}\right]\left[\begin{array}{ll} {\mathrm{ E}}_1\hfill \\{\hfill} {\mathrm{ A}}_1\hfill \end{array}\right]\end{array} $$
$$\begin{array}{cc} \left[\begin{array}{cc} {C}_{\mathrm{ C}\hfill} & \hfill 0\hfill \\{\hfill} 0\hfill & \hfill {C}_{\mathrm{ F}\hfill} \end{array}\right]\left[\begin{array}{ll} \displaystyle\frac{{\mathrm{ d}\mathrm{ C}}_1}{\mathrm{ d}t\hfill} \\{\hfill}\displaystyle \frac{{\mathrm{ d}\mathrm{ F}}_1}{\mathrm{ d}t\hfill} \end{array}\right]=\left[\begin{array}{cc} -{v}_2-{v}_4\hfill & \hfill {v}_4\hfill \\{\hfill} {v}_3\hfill & \hfill -{v}_3\hfill \end{array}\right]\left[\begin{array}{ll} {\mathrm{ C}}_1\hfill \\{\hfill} {\mathrm{ F}}_1\hfill \end{array}\right]+\left[\begin{array}{ll} {v}_2\hfill \\{\hfill} 0\hfill \end{array}\right]\left[{\mathrm{ B}}_1\right] \end{array}$$
$$ \begin{array}{ccc}\left[\begin{array}{ccc} {C}_{\mathrm{ C}\hfill} & \hfill 0\hfill & \hfill 0\hfill \\{\hfill} 0\hfill & \hfill {C}_{\mathrm{ D}\hfill} & \hfill 0\hfill \\{\hfill} 0\hfill & \hfill 0\hfill & \hfill {C}_{\mathrm{ B}\hfill} \end{array}\right]\left[\begin{array}{ll} \frac{{\mathrm{ d}\mathrm{ C}}_{23}}{\mathrm{ d}t\hfill} \\{\hfill} \frac{{\mathrm{ d}\mathrm{ D}}_{12}}{\mathrm{ d}t\hfill} \\{\hfill} \frac{{\mathrm{ d}\mathrm{ B}}_{12}}{\mathrm{ d}t\hfill} \end{array}\right]=\left[\begin{array}{ccc} -{v}_2-{v}_4\hfill & \hfill {v}_4\hfill & \hfill 0\hfill \\{\hfill} {v}_3\hfill & \hfill -{v}_3-{v}_5\hfill & \hfill {v}_5\hfill \\{\hfill} 0\hfill & \hfill {v}_6\hfill & \hfill -{v}_1-{v}_6\hfill \end{array}\right]\left[\begin{array}{ll} {\mathrm{ C}}_{23\hfill} \\{\hfill} {\mathrm{ D}}_{12\hfill} \\{\hfill} {\mathrm{ B}}_{12\hfill} \end{array}\right]\cr+\left[\begin{array}{cc} {v}_2\hfill & \hfill 0\hfill \\{\hfill} 0\hfill & \hfill 0\hfill \\{\hfill} 0\hfill & \hfill {v}_1\hfill \end{array}\right]\left[\begin{array}{ll} {\mathrm{ B}}_2\times {\mathrm{ E}}_1\hfill \\{\hfill} {\mathrm{ A}}_{12\hfill} \end{array}\right]\end{array} $$
$$ \left[{C}_{\mathrm{ C}}\right]\left[\frac{{\mathrm{ d}\mathrm{ C}}_{123}}{\mathrm{ d}t}\right]=\left[-{v}_2-{v}_4\right]\left[{\mathrm{ C}}_{123}\right]+\left[\begin{array}{cc} {v}_2\hfill & \hfill {v}_4\hfill \end{array}\right]\left[\begin{array}{ll} {\mathrm{ B}}_{12}\times {\mathrm{ E}}_1\hfill \\{\hfill} {\mathrm{ D}}_{12}\times {\mathrm{ F}}_1\hfill \end{array}\right] $$

Solving this system of ODEs will simulate the EMU labeling trajectories needed to calculate the time-dependent MID of metabolite C. The flux and pool size parameters can then be adjusted iteratively using an optimization search algorithm to converge on parameter values that minimize the lack of fit with experimental mass isotopomer data.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Jazmin, L.J., O’Grady, J.P., Ma, F., Allen, D.K., Morgan, J.A., Young, J.D. (2014). Isotopically Nonstationary MFA (INST-MFA) of Autotrophic Metabolism. In: Dieuaide-Noubhani, M., Alonso, A. (eds) Plant Metabolic Flux Analysis. Methods in Molecular Biology, vol 1090. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-688-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-688-7_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-687-0

  • Online ISBN: 978-1-62703-688-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics