Skip to main content

Steady-State and Instationary Modeling of Proteinogenic and Free Amino Acid Isotopomers for Flux Quantification

  • Protocol
  • First Online:
Plant Metabolic Flux Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1090))

  • 2891 Accesses

Abstract

Metabolic flux analysis (MFA) is a powerful tool for exploring and quantifying carbon traffic in metabolic networks. Accurate flux quantification requires (1) high-quality isotopomer measurements, usually of biomass components including proteinogenic/free amino acids or central carbon metabolites, and (2) a mathematical model that relates the unknown fluxes to the measured isotopomers. Modeling requires a thorough knowledge of the structure of the underlying metabolic network, often available from many databases, as well as the ability to make reasonable assumptions that will enable simplification of the model. Here we describe a general methodology underlying computer-aided mathematical modeling of a flux–isotopomer relationship and some of the accompanying data-processing steps. One of two modeling strategies will need to be employed, depending on the type of isotope labeling experiment performed. These strategies—steady-state modeling and instationary modeling—have different experimental and computational demands. We discuss the concepts underlying these two types of modeling and demonstrate steady-state modeling in a step-by-step manner. Our methodology should be applicable to most isotope-assisted MFA applications and should serve as a general framework applicable to many realistic metabolic networks with little modification.

Yuting Zheng and Ganesh Sriram conceived the chapter. Yuting Zheng wrote the first draft and prepared data displays. Ganesh Sriram critically edited the draft and prepared a final version. Both authors approved the final version of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11

    Article  PubMed  CAS  Google Scholar 

  2. Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206

    Article  PubMed  CAS  Google Scholar 

  3. Sriram G, Fulton DB, Iyer VV et al (2004) Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional 13C labeling, two-dimensional [13C, 1H] nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiol 136:3043–3057

    Google Scholar 

  4. Sriram G, Fulton DB, Shanks JV (2007) Flux quantification in central carbon metabolism of Catharanthus roseus hairy roots by 13C labeling and comprehensive bondomer balancing. Phytochemistry 68:2243–2257

    Article  PubMed  CAS  Google Scholar 

  5. Iyer V, Sriram G, Shanks JV (2007) Metabolic flux maps of central carbon metabolism in plant systems. In: Wurtele ES, Nikolau BJ (eds) Concepts in plant metabolomics. Springer, Dordrecht, The Netherlands, pp 125–144

    Chapter  Google Scholar 

  6. Nargund S, Joffe ME, Tran D, Tugarinov V, Sriram G (2013) Nuclear magnetic resonance methods for metabolic fluxomics. In: Alper HS (ed) Systems metabolic engineering. Humana, New York, NY, pp 335–351

    Chapter  Google Scholar 

  7. Edwards JS, Palsson BO (2000) Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1:1

    Article  PubMed  CAS  Google Scholar 

  8. Lee JM, Gianchandani EP, Papin JA (2006) Flux balance analysis in the era of metabolomics. Brief Bioinform 7:140–150

    Article  PubMed  Google Scholar 

  9. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14:491–496

    Article  PubMed  CAS  Google Scholar 

  10. Resendis-Antonio O, Reed JL, Encarnación S, Collado-Vides J, Palsson BØ (2007) Metabolic reconstruction and modeling of nitrogen fixation in Rhizobium etli. PLoS Comput Biol 3:e192

    Article  Google Scholar 

  11. AbuOun M, Suthers PF, Jones GI et al (2009) Genome scale reconstruction of a Salmonella metabolic model: comparison of similarity and differences with a commensal Escherichia coli strain. J Biolog Chem 284:29480–29488

    Article  CAS  Google Scholar 

  12. Feist AM, Henry CS, Reed JL et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Article  PubMed  Google Scholar 

  13. Tran LM, Rizk ML, Liao JC (2008) Ensemble modeling of metabolic networks. Biophys J 95:5606–5617

    Article  PubMed  CAS  Google Scholar 

  14. Wiechert W, Siefke C, de Graaf AA, Marx A (1997) Bidirectional reaction steps in metabolic networks: II. Flux estimation and statistical analysis. Biotechnol Bioeng 55:118–135

    Article  PubMed  CAS  Google Scholar 

  15. Wiechert W, Möllney M, Isermann N, Wurzel M, De Graaf AA (1999) Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol Bioeng 66:69–85

    Article  PubMed  CAS  Google Scholar 

  16. Sriram G, Shanks JV (2004) Improvements in metabolic flux analysis using carbon bond labeling experiments: bondomer balancing and Boolean function mapping. Metab Eng 6:116–132

    Article  PubMed  CAS  Google Scholar 

  17. van Winden WA, Heijnen JJ, Verheijen PJT (2002) Cumulative bondomers: a new concept in flux analysis from 2D [13C, 1H] COSY NMR data. Biotechnol Bioeng 80:731–745

    Article  PubMed  Google Scholar 

  18. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68–86

    Article  PubMed  CAS  Google Scholar 

  19. Nöh K, Wiechert W (2006) Experimental design principles for isotopically instationary 13C labeling experiments. Biotechnol Bioeng 94:234–251

    Article  PubMed  Google Scholar 

  20. Young JD, Walther JL, Antoniewicz MR, Yoo H, Stephanopoulos G (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol Bioeng 99:686–699

    Article  PubMed  CAS  Google Scholar 

  21. Masoudi-Nejad A, Goto S, Endo TR, Kanehisa M (2008) KEGG bioinformatics resource for plant genomics research [Internet]. In: Edwards D (ed) Plant bioinformatics. Humana, New York, NY, pp 437–458

    Google Scholar 

  22. Zhang P, Foerster H, Tissier CP et al (2005) MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiol 138:27–37

    Article  PubMed  CAS  Google Scholar 

  23. Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782

    Article  PubMed  CAS  Google Scholar 

  24. Yang TH, Heinzle E, Wittmann C (2005) Theoretical aspects of 13C metabolic flux analysis with sole quantification of carbon dioxide labeling. Comput Biol Chem 29:121–133

    Article  PubMed  CAS  Google Scholar 

  25. Wittmann C, Heinzle E (2001) Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry. Metab Eng 3:173–191

    Article  PubMed  CAS  Google Scholar 

  26. Nargund S, Sriram G (2013) Designer labels for plant metabolism: statistical design of isotope labeling experiments for improved quantification of flux in complex plant metabolic networks. Mol Biosyst 9:99–112

    Article  PubMed  CAS  Google Scholar 

  27. Weitzel M, Nöh K, Dalman T et al (2012) 13CFLUX2—high-performance software suite for 13C-metabolic flux analysis. Bioinformatics 29:143–145

    Article  PubMed  Google Scholar 

  28. Quek L-E, Wittmann C, Nielsen LK, Krömer JO (2009) OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Fact 8:25

    Article  PubMed  Google Scholar 

  29. Zamboni N, Fischer E, Sauer U (2005) FiatFlux - a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 6:209

    Article  PubMed  Google Scholar 

  30. Sriram G, Rahib L, He J-S et al (2008) Global metabolic effects of glycerol kinase overexpression in rat hepatoma cells. Mol Genet Metab 93:145–159

    Article  PubMed  CAS  Google Scholar 

  31. Masakapalli SK, Lay PL, Huddleston JE et al (2010) Subcellular flux analysis of central metabolism in a heterotrophic Arabidopsis thaliana cell suspension using steady-state stable isotope labeling. Plant Physiol 152:602–609

    Article  PubMed  CAS  Google Scholar 

  32. O’Leary MH (1988) Carbon isotopes in photosynthesis. BioScience 38:328–336

    Article  Google Scholar 

  33. Winden WAV, Wittmann C, Heinzle E, Heijnen JJ (2002) Correcting mass isotopomer distributions for naturally occurring isotopes. Biotechnol Bioeng 80:477–479

    Article  PubMed  Google Scholar 

  34. Szyperski T (1998) 13C-NMR, MS and metabolic flux balancing in biotechnology research. Q Rev Biophys 31:41–106

    Article  PubMed  CAS  Google Scholar 

  35. Isermann N, Wiechert W (2003) Metabolic isotopomer labeling systems. Part II: structural flux identifiability analysis. Math Biosci 183:175–214

    Article  PubMed  CAS  Google Scholar 

  36. Libourel IGL, Gehan JP, Shachar-Hill Y (2007) Design of substrate label for steady state flux measurements in plant systems using the metabolic network of Brassica napus embryos. Phytochemistry 68:2211–2221

    Article  PubMed  CAS  Google Scholar 

  37. Crown SB, Antoniewicz MR (2012) Selection of tracers for 13C-metabolic flux analysis using elementary metabolite units (EMU) basis vector methodology. Metab Eng 14:150–161

    Article  PubMed  CAS  Google Scholar 

  38. Onbaşoğlu E, Özdamar L (2001) Parallel simulated annealing algorithms in global optimization. J Global Optim 19:27–50

    Article  Google Scholar 

  39. Young JD, Shastri AA, Stephanopoulos G, Morgan JA (2011) Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis [Internet]. Metab Eng 13:656–665

    Article  PubMed  CAS  Google Scholar 

  40. Singh BK (1998) Plant amino acids (Books in soils, plants, & the environment). CRC, USA

    Google Scholar 

  41. Allen DK, Laclair RW, Ohlrogge JB, Shachar-Hill Y (2012) Isotope labelling of Rubisco subunits provides in vivo information on subcellular biosynthesis and exchange of amino acids between compartments. Plant Cell Environ 35:232–1244

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Science Foundation (award numbers CBET 1134115 and IOS 0922650).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Zheng, Y., Sriram, G. (2014). Steady-State and Instationary Modeling of Proteinogenic and Free Amino Acid Isotopomers for Flux Quantification. In: Dieuaide-Noubhani, M., Alonso, A. (eds) Plant Metabolic Flux Analysis. Methods in Molecular Biology, vol 1090. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-688-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-688-7_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-687-0

  • Online ISBN: 978-1-62703-688-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics