Skip to main content

Anti-infective Drug Development for MRSA

  • Protocol
  • First Online:
Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1085))

Abstract

Staphylococcus aureus is an important pathogen linked to serious infections both in the hospital and the community settings. The challenge to treat infections caused by S. aureus has increased because of the emergence of multidrug-resistant strains such as methicillin-resistant S. aureus (MRSA). A limited spectrum of antibiotics is available to treat MRSA infections. This chapter reviews antimicrobial agents currently in use for the treatment of MRSA infections as well as agents that are in various stages of development. This chapter also reviews the alternate approaches that are being explored for the treatment of staphylococcal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Diekema DJ, BootsMiller BJ, Vaughn TE et al (2004) Antimicrobial resistance trends and outbreak frequency in United States hospitals. Clin Infect Dis 38:78–85

    PubMed  Google Scholar 

  2. Hamilton-Miller JM (2002) Vancomycin-resistant Staphylococcus aureus: a real and present danger? Infection 30:118–124

    PubMed  CAS  Google Scholar 

  3. Speller DC, Johnson AP, James D et al (1997) Resistance to methicillin and other antibiotics in isolates of Staphylococcus aureus from blood and cerebrospinal fluid, England and Wales, 1989–95. Lancet 350:323–325

    PubMed  CAS  Google Scholar 

  4. Calfee DP (2012) Methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, and other Gram-positives in healthcare. Curr Opin Infect Dis 25:385–394

    PubMed  CAS  Google Scholar 

  5. Biedenbach DJ, Moet GJ, Jones RN (2004) Occurrence and antimicrobial resistance pattern comparisons among bloodstream infection isolates from the SENTRY Antimicrobial Surveillance Program (1997-2002). Diagn Microbiol Infect Dis 50:59–69

    PubMed  CAS  Google Scholar 

  6. Jones RN (2006) Use of surveillance programs as a platform for testing new antimicrobials against multidrug resistant bacteria, recent experiences. In: Gordon research conference on new antibacterial discovery & development

    Google Scholar 

  7. Kallen AJ, Mu Y, Bulens S et al (2010) Health care-associated invasive MRSA infections, 2005–2008. JAMA 304:641–648

    PubMed  CAS  Google Scholar 

  8. Abramson MA, Sexton DJ (1999) Nosocomial methicillin-resistant and methicillin-susceptible Staphylococcus aureus primary bacteremia: at what costs? Infect Control Hosp Epidemiol 20:408–411

    PubMed  CAS  Google Scholar 

  9. Naber CK (2009) Staphylococcus aureus bacteremia: epidemiology, pathophysiology, and management strategies. Clin Infect Dis 48(Suppl 4):S231–S237

    PubMed  Google Scholar 

  10. Deleo FR, Otto M, Kreiswirth BN, Chambers HF (2010) Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375:1557–1568

    PubMed  Google Scholar 

  11. Stemper ME, Brady JM, Qutaishat SS et al (2006) Shift in Staphylococcus aureus clone linked to an infected tattoo. Emerg Infect Dis 12:1444–1446

    PubMed  Google Scholar 

  12. Miller LG, Diep BA (2008) Clinical practice: colonization, fomites, and virulence: rethinking the pathogenesis of community-associated methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 46:752–760

    PubMed  CAS  Google Scholar 

  13. Kennedy AD, Otto M, Braughton KR et al (2008) Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proc Natl Acad Sci USA 105:1327–1332

    PubMed  CAS  Google Scholar 

  14. Huang YH, Tseng SP, Hu JM et al (2007) Clonal spread of SCCmec type IV methicillin-resistant Staphylococcus aureus between community and hospital. Clin Microbiol Infect 13:717–724

    PubMed  CAS  Google Scholar 

  15. Kuint J, Barzilai A, Regev-Yochay G et al (2007) Comparison of community-acquired methicillin-resistant Staphylococcus aureus bacteremia to other staphylococcal species in a neonatal intensive care unit. Eur J Pediatr 166:319–325

    PubMed  Google Scholar 

  16. Savas L, Duran N, Onlen Y et al (2005) Prospective analysis of antibiotic susceptibility patterns of MRSA in a Turkish University Hospital. Turk J Med Sci 35:323–327

    CAS  Google Scholar 

  17. Sola C, Gribaudo G, Vindel A et al (2002) Identification of a novel methicillin-resistant Staphylococcus aureus epidemic clone in Cordoba, Argentina, involved in nosocomial infections. J Clin Microbiol 40:1427–1435

    PubMed  Google Scholar 

  18. Denis O, Nonhoff C, Byl B et al (2002) Emergence of vancomycin-intermediate Staphylococcus aureus in a Belgian hospital: microbiological and clinical features. J Antimicrob Chemother 50:383–391

    PubMed  CAS  Google Scholar 

  19. Heym B, Le Moal M, Armand-Lefevre L et al (2002) Multilocus sequence typing (MLST) shows that the “Iberian” clone of methicillin-resistant Staphylococcus aureus has spread to France and acquired reduced susceptibility to teicoplanin. J Antimicrob Chemother 50:323–329

    PubMed  CAS  Google Scholar 

  20. Hussain FM, Boyle-Vavra S, Shete PB et al (2002) Evidence for a continuum of decreased vancomycin susceptibility in unselected Staphylococcus aureus clinical isolates. J Infect Dis 186:661–667

    PubMed  CAS  Google Scholar 

  21. Saravolatz LD, Pawlak J, Johnson LB (2010) In vitro activity of oritavancin against community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA), vancomycin-intermediate S. aureus (VISA), vancomycin-resistant S. aureus (VRSA) and daptomycin-non-susceptible S. aureus (DNSSA). Int J Antimicrob Agents 36:69–72

    PubMed  CAS  Google Scholar 

  22. Nichol KA, Adam HJ, Hussain Z et al (2011) Comparison of community-associated and health care-associated methicillin-resistant Staphylococcus aureus in Canada: results of the CANWARD 2007-2009 study. Diagn Microbiol Infect Dis 69:320–325

    PubMed  Google Scholar 

  23. Finch R (2006) Gram-positive infections: lessons learnt and novel solutions. Clin Microbiol Infect 12:3–8

    Google Scholar 

  24. Goldstein F (2007) The potential clinical impact of low-level antibiotic resistance in Staphylococcus aureus. J Antimicrob Chemother 59:1–4

    PubMed  CAS  Google Scholar 

  25. Karchmer AW (2006) From theory to practice: resistance in Staphylococcus aureus and new treatments. Clin Microbiol Infect 12:15–21

    CAS  Google Scholar 

  26. Livermore DM (2006) Can beta-lactams be re-engineered to beat MRSA? Clin Microbiol Infect 12(Suppl 2):11–16

    PubMed  CAS  Google Scholar 

  27. Tacconelli E (2006) New strategies to identify patients harbouring antibiotic-resistant bacteria at hospital admission. Clin Microbiol Infect 12:102–109

    PubMed  CAS  Google Scholar 

  28. Gilbert B, Robbins P, Livornese LL Jr (2011) Use of antibacterial agents in renal failure. Med Clin North Am 95:677–702

    PubMed  CAS  Google Scholar 

  29. Naimi TS, LeDell KH, Como-Sabetti K et al (2003) Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA 290:2976–2984

    PubMed  CAS  Google Scholar 

  30. Carleton HA, Diep BA, Charlebois ED et al (2004) Community-adapted methicillin-resistant Staphylococcus aureus (MRSA): population dynamics of an expanding community reservoir of MRSA. J Infect Dis 190:1730–1738

    PubMed  CAS  Google Scholar 

  31. Srinivasan A, Dick JD, Perl TM (2002) Vancomycin resistance in staphylococci. Clin Microbiol Rev 15:430–438

    PubMed  CAS  Google Scholar 

  32. Kirst HA, Thompson DG, Nicas TI (1998) Historical yearly usage of vancomycin. Antimicrob Agents Chemother 42:1303–1304

    PubMed  CAS  Google Scholar 

  33. Chang FY, Peacock JE Jr, Musher DM et al (2003) Staphylococcus aureus bacteremia: recurrence and the impact of antibiotic treatment in a prospective multicenter study. Medicine (Baltimore) 82:333–339

    CAS  Google Scholar 

  34. LaPlante KL, Rybak MJ (2004) Impact of high-inoculum Staphylococcus aureus on the activities of nafcillin, vancomycin, linezolid, and daptomycin, alone and in combination with gentamicin, in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 48:4665–4672

    PubMed  CAS  Google Scholar 

  35. Hiramatsu K, Hanaki H, Ino T et al (1997) Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 40:135–136

    PubMed  CAS  Google Scholar 

  36. Howden BP, Davies JK, Johnson PD et al (2010) Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev 23:99–139

    PubMed  CAS  Google Scholar 

  37. Smith TL, Pearson ML, Wilcox KR et al (1999) Emergence of vancomycin resistance in Staphylococcus aureus. Glycopeptide-Intermediate Staphylococcus aureus Working Group. N Engl J Med 340:493–501

    PubMed  CAS  Google Scholar 

  38. Steinkraus G, White R, Friedrich L (2007) Vancomycin MIC creep in non-vancomycin-intermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001–05. J Antimicrob Chemother 60:788–794

    PubMed  CAS  Google Scholar 

  39. Ratnaraja NV, Hawkey PM (2008) Current challenges in treating MRSA: what are the options? Expert Rev Anti Infect Ther 6:601–618

    PubMed  Google Scholar 

  40. Howe RA, Wootton M, Noel AR et al (2003) Activity of AZD2563, a novel oxazolidinone, against Staphylococcus aureus strains with reduced susceptibility to vancomycin or linezolid. Antimicrob Agents Chemother 47:3651–3652

    PubMed  CAS  Google Scholar 

  41. Stevens DL, Dotter B, Madaras-Kelly K (2004) A review of linezolid: the first oxazolidinone antibiotic. Expert Rev Anti Infect Ther 2:51–59

    PubMed  CAS  Google Scholar 

  42. MacGowan AP (2003) Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with Gram-positive infections. J Antimicrob Chemother 51(Suppl 2):ii17–ii25

    PubMed  CAS  Google Scholar 

  43. Liu C, Bayer A, Cosgrove SE et al (2011) Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52:e18–e55

    PubMed  Google Scholar 

  44. Farrell DJ, Mendes RE, Ross JE et al (2009) Linezolid surveillance program results for 2008 (LEADER Program for 2008). Diagn Microbiol Infect Dis 65:392–403

    PubMed  Google Scholar 

  45. Sanchez GM, De la Torre MA, Morales G et al (2010) Clinical outbreak of linezolid-resistant Staphylococcus aureus in an intensive care unit. JAMA 303:2260–2264

    Google Scholar 

  46. Pillai SK, Sakoulas G, Wennersten C et al (2002) Linezolid resistance in Staphylococcus aureus: characterization and stability of resistant phenotype. J Infect Dis 186:1603–1607

    PubMed  CAS  Google Scholar 

  47. Arias CA, Vallejo M, Reyes J et al (2008) Clinical and microbiological aspects of linezolid resistance mediated by the cfr gene encoding a 23S rRNA methyltransferase. J Clin Microbiol 46:892–896

    PubMed  CAS  Google Scholar 

  48. Toh SM, Xiong L, Arias CA et al (2007) Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Mol Microbiol 64:1506–1514

    PubMed  CAS  Google Scholar 

  49. Welte T, Pletz MW (2010) Antimicrobial treatment of nosocomial meticillin-resistant Staphylococcus aureus (MRSA) pneumonia: current and future options. Int J Antimicrob Agents 36:391–400

    PubMed  CAS  Google Scholar 

  50. Aksoy DY, Unal S (2008) New antimicrobial agents for the treatment of Gram-positive bacterial infections. Clin Microbiol Infect 14:411–420

    PubMed  CAS  Google Scholar 

  51. Bearden DT (2004) Clinical pharmacokinetics of quinupristin/dalfopristin. Clin Pharmacokinet 43:239–252

    PubMed  CAS  Google Scholar 

  52. Anstead GM, Quinones-Nazario G, Lewis JS (2007) Treatment of infections caused by resistant Staphylococcus aureus. Methods Mol Biol 391:227–258

    PubMed  CAS  Google Scholar 

  53. Pogliano J, Pogliano N, Silverman JA (2012) Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol 194:4494–4504

    PubMed  CAS  Google Scholar 

  54. Tedesco KL, Rybak MJ (2004) Daptomycin. Pharmacotherapy 24:41–57

    PubMed  CAS  Google Scholar 

  55. Cha R, Grucz RG Jr, Rybak MJ (2003) Daptomycin dose-effect relationship against resistant gram-positive organisms. Antimicrob Agents Chemother 47:1598–1603

    PubMed  CAS  Google Scholar 

  56. Shah PM (2005) The need for new therapeutic agents: what is the pipeline? Clin Microbiol Infect 11(Suppl 3):36–42

    PubMed  CAS  Google Scholar 

  57. Benvenuto M, Benziger DP, Yankelev S et al (2006) Pharmacokinetics and tolerability of daptomycin at doses up to 12 milligrams per kilogram of body weight once daily in healthy volunteers. Antimicrob Agents Chemother 50:3245–3249

    PubMed  CAS  Google Scholar 

  58. Silverman JA, Mortin LI, Vanpraagh AD et al (2005) Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J Infect Dis 191:2149–2152

    PubMed  CAS  Google Scholar 

  59. Sader HS, Streit JM, Fritsche TR et al (2006) Antimicrobial susceptibility of gram-positive bacteria isolated from European medical centres: results of the Daptomycin Surveillance Programme (2002–2004). Clin Microbiol Infect 12:844–852

    PubMed  CAS  Google Scholar 

  60. Boucher HW, Sakoulas G (2007) Perspectives on Daptomycin resistance, with emphasis on resistance in Staphylococcus aureus. Clin Infect Dis 45:601–608

    PubMed  CAS  Google Scholar 

  61. Hayden MK, Rezai K, Hayes RA et al (2005) Development of Daptomycin resistance in vivo in methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43:5285–5287

    PubMed  CAS  Google Scholar 

  62. Marty FM, Yeh WW, Wennersten CB et al (2006) Emergence of a clinical daptomycin-resistant Staphylococcus aureus isolate during treatment of methicillin-resistant Staphylococcus aureus bacteremia and osteomyelitis. J Clin Microbiol 44:595–597

    PubMed  CAS  Google Scholar 

  63. van Hal SJ, Wehrhahn MC, Barbagiannakos T et al (2011) Performance of various testing methodologies for detection of heteroresistant vancomycin-intermediate Staphylococcus aureus in bloodstream isolates. J Clin Microbiol 49:1489–1494

    PubMed  Google Scholar 

  64. Arbeit RD, Maki D, Tally FP et al (2004) The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 38:1673–1681

    PubMed  CAS  Google Scholar 

  65. Fowler VG Jr, Boucher HW, Corey GR et al (2006) Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 355:653–665

    PubMed  CAS  Google Scholar 

  66. Fluit AC, Florijn A, Verhoef J et al (2005) Presence of tetracycline resistance determinants and susceptibility to tigecycline and minocycline. Antimicrob Agents Chemother 49:1636–1638

    PubMed  CAS  Google Scholar 

  67. Livermore DM (2005) Tigecycline: what is it, and where should it be used? J Antimicrob Chemother 56:611–614

    PubMed  CAS  Google Scholar 

  68. Rodvold KA, Gotfried MH, Cwik M et al (2006) Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose. J Antimicrob Chemother 58:1221–1229

    PubMed  CAS  Google Scholar 

  69. Pankey GA (2005) Tigecycline. J Antimicrob Chemother 56:470–480

    PubMed  CAS  Google Scholar 

  70. Talbot GH, Thye D, Das A et al (2007) Phase 2 study of ceftaroline versus standard therapy in treatment of complicated skin and skin structure infections. Antimicrob Agents Chemother 51:3612–3616

    PubMed  CAS  Google Scholar 

  71. Biek D, Critchley IA, Riccobene TA et al (2010) Ceftaroline fosamil: a novel broad-spectrum cephalosporin with expanded anti-Gram-positive activity. J Antimicrob Chemother 65(Suppl 4):iv9–iv16

    PubMed  CAS  Google Scholar 

  72. Mushtaq S, Warner M, Ge Y et al (2007) In vitro activity of ceftaroline (PPI-0903M, T-91825) against bacteria with defined resistance mechanisms and phenotypes. J Antimicrob Chemother 60:300–311

    PubMed  CAS  Google Scholar 

  73. Sader HS, Fritsche TR, Jones RN (2008) Antimicrobial activities of Ceftaroline and ME1036 tested against clinical strains of community-acquired methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 52:1153–1155

    PubMed  CAS  Google Scholar 

  74. Girish C, Balakrishnan S (2011) Ceftaroline fosamil: A novel anti-methicillin-resistant Staphylococcus aureus cephalosporin. J Pharmacol Pharmacother 2:209–211

    PubMed  CAS  Google Scholar 

  75. Noel GJ, Strauss RS, Amsler K et al (2008) Results of a double-blind, randomized trial of ceftobiprole treatment of complicated skin and skin structure infections caused by gram-positive bacteria. Antimicrob Agents Chemother 52:37–44

    PubMed  CAS  Google Scholar 

  76. Heep M, Sahm DF, Draghi DC et al (2005) Activity of ceftobiprole against recent clinical isolates of enterobacteriaceae from respiratory infections from hospitalized patients in Europe and USA. Presented at 15th European congress on clinical microbiology and infectious diseases, Copenhagen

    Google Scholar 

  77. von Eiff C, Friedrich AW, Becker K et al (2005) Comparative in vitro activity of ceftobiprole against staphylococci displaying normal and small-colony variant phenotypes. Antimicrob Agents Chemother 49:4372–4374

    Google Scholar 

  78. Murthy B, Schmitt-Hoffmann A (2008) Pharmacokinetics and pharmacodynamics of ceftobiprole, an anti-MRSA cephalosporin with broad-spectrum activity. Clin Pharmacokinet 47:21–33

    PubMed  CAS  Google Scholar 

  79. Schmitt-Hoffmann A, Nyman L, Roos B et al (2004) Multiple-dose pharmacokinetics and safety of a novel broad-spectrum cephalosporin (BAL5788) in healthy volunteers. Antimicrob Agents Chemother 48:2576–2580

    PubMed  CAS  Google Scholar 

  80. Schmitt-Hoffmann A, Roos B, Schleimer M et al (2004) Single-dose pharmacokinetics and safety of a novel broad-spectrum cephalosporin (BAL5788) in healthy volunteers. Antimicrob Agents Chemother 48:2570–2575

    PubMed  CAS  Google Scholar 

  81. Higgins DL, Chang R, Debabov DV et al (2005) Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 49:1127–1134

    PubMed  CAS  Google Scholar 

  82. Saravolatz LD, Stein GE, Johnson LB (2009) Telavancin: a novel lipoglycopeptide. Clin Infect Dis 49:1908–1914

    PubMed  CAS  Google Scholar 

  83. Kanafani ZA (2006) Telavancin: a new lipoglycopeptide with multiple mechanisms of action. Expert Rev Anti Infect Ther 4:743–749

    PubMed  CAS  Google Scholar 

  84. Hegde SS, Reyes N, Wiens T et al (2004) Pharmacodynamics of telavancin (TD-6424), a novel bactericidal agent, against gram-positive bacteria. Antimicrob Agents Chemother 48:3043–3050

    PubMed  CAS  Google Scholar 

  85. Stryjewski ME, Graham DR, Wilson SE et al (2008) Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms. Clin Infect Dis 46:1683–1693

    PubMed  CAS  Google Scholar 

  86. Billeter M, Zervos MJ, Chen AY et al (2008) Dalbavancin: a novel once-weekly lipoglycopeptide antibiotic. Clin Infect Dis 46:577–583

    PubMed  CAS  Google Scholar 

  87. Roecker AM, Pope SD (2008) Dalbavancin: a lipoglycopeptide antibacterial for Gram-positive infections. Expert Opin Pharmacother 9:1745–1754

    PubMed  CAS  Google Scholar 

  88. Leighton A, Gottlieb AB, Dorr MB et al (2004) Tolerability, pharmacokinetics, and serum bactericidal activity of intravenous dalbavancin in healthy volunteers. Antimicrob Agents Chemother 48:940–945

    PubMed  CAS  Google Scholar 

  89. Dorr MB, Jabes D, Cavaleri M et al (2005) Human pharmacokinetics and rationale for once-weekly dosing of dalbavancin, a semi-synthetic glycopeptide. J Antimicrob Chemother 55(Suppl 2):ii25–ii30

    PubMed  CAS  Google Scholar 

  90. Seltzer E, Dorr MB, Goldstein BP et al (2003) Once-weekly dalbavancin versus standard-of-care antimicrobial regimens for treatment of skin and soft-tissue infections. Clin Infect Dis 37:1298–1303

    PubMed  CAS  Google Scholar 

  91. Jauregui LE, Babazadeh S, Seltzer E et al (2005) Randomized, double-blind comparison of once-weekly dalbavancin versus twice-daily linezolid therapy for the treatment of complicated skin and skin structure infections. Clin Infect Dis 41:1407–1415

    PubMed  CAS  Google Scholar 

  92. Zhanel GG, Schweizer F, Karlowsky JA (2012) Oritavancin: mechanism of action. Clin Infect Dis 54(Suppl 3):S214–S219

    PubMed  CAS  Google Scholar 

  93. Poulakou G, Giamarellou H (2008) Oritavancin: a new promising agent in the treatment of infections due to Gram-positive pathogens. Expert Opin Investig Drugs 17:225–243

    PubMed  CAS  Google Scholar 

  94. Domenech O, Francius G, Tulkens PM et al (2009) Interactions of oritavancin, a new lipoglycopeptide derived from vancomycin, with phospholipid bilayers: effect on membrane permeability and nanoscale lipid membrane organization. Biochim Biophys Acta 1788:1832–1840

    PubMed  CAS  Google Scholar 

  95. Kim SJ, Cegelski L, Stueber D et al (2008) Oritavancin exhibits dual mode of action to inhibit cell-wall biosynthesis in Staphylococcus aureus. J Mol Biol 377:281–293

    PubMed  CAS  Google Scholar 

  96. Dunbar LM, Milata J, McClure T et al (2011) Comparison of the efficacy and safety of oritavancin front-loaded dosing regimens to daily dosing: an analysis of the SIMPLIFI trial. Antimicrob Agents Chemother 55:3476–3484

    PubMed  CAS  Google Scholar 

  97. Kurlenda J, Grinholc M (2012) Alternative therapies in Staphylococcus aureus diseases. Acta Biochim Pol 59:171–184

    PubMed  CAS  Google Scholar 

  98. Otto M (2008) Targeted immunotherapy for staphylococcal infections: focus on anti-MSCRAMM antibodies. BioDrugs 22:27–36

    PubMed  CAS  Google Scholar 

  99. Schaffer AC, Lee JC (2008) Vaccination and passive immunisation against Staphylococcus aureus. Int J Antimicrob Agents 32(Suppl 1):S71–S78

    PubMed  CAS  Google Scholar 

  100. Deresinski S (2006) Antistaphylococcal vaccines and immunoglobulins: current status and future prospects. Drugs 66:1797–1806

    PubMed  CAS  Google Scholar 

  101. Fattom A, Fuller S, Propst M et al (2004) Safety and immunogenicity of a booster dose of Staphylococcus aureus types 5 and 8 capsular polysaccharide conjugate vaccine (StaphVAX) in hemodialysis patients. Vaccine 23:656–663

    PubMed  CAS  Google Scholar 

  102. Shinefield HR (2006) Use of a conjugate polysaccharide vaccine in the prevention of invasive staphylococcal disease: is an additional vaccine needed or possible? Vaccine 24(Suppl 2):65–69

    Google Scholar 

  103. Bubeck WJ, Schneewind O (2008) Vaccine protection against Staphylococcus aureus pneumonia. J Exp Med 205:287–294

    Google Scholar 

  104. Chang BS, Moon JS, Kang HM et al (2008) Protective effects of recombinant staphylococcal enterotoxin type C mutant vaccine against experimental bovine infection by a strain of Staphylococcus aureus isolated from subclinical mastitis in dairy cattle. Vaccine 26:2081–2091

    PubMed  CAS  Google Scholar 

  105. Hu DL, Omoe K, Narita K et al (2006) Intranasal vaccination with a double mutant of staphylococcal enterotoxin C provides protection against Staphylococcus aureus infection. Microbes Infect 8:2841–2848

    PubMed  CAS  Google Scholar 

  106. Brown EL, Dumitrescu O, Thomas D et al (2009) The Panton-Valentine leukocidin vaccine protects mice against lung and skin infections caused by Staphylococcus aureus USA300. Clin Microbiol Infect 15:156–164

    CAS  Google Scholar 

  107. Narita K, Hu DL, Tsuji T et al (2008) Intranasal immunization of mutant toxic shock syndrome toxin 1 elicits systemic and mucosal immune response against Staphylococcus aureus infection. FEMS Immunol Med Microbiol 52:389–396

    PubMed  CAS  Google Scholar 

  108. Verbeken G, De Vos D, Vaneechoutte M et al (2007) European regulatory conundrum of phage therapy. Future Microbiol 2:485–491

    PubMed  CAS  Google Scholar 

  109. Gorski A, Targonska M, Borysowski J et al (2009) The potential of phage therapy in bacterial infections of the eye. Ophthalmologica 223:162–165

    PubMed  Google Scholar 

  110. Capparelli R, Parlato M, Borriello G et al (2007) Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob Agents Chemother 51:2765–2773

    PubMed  CAS  Google Scholar 

  111. Matsuzaki S, Yasuda M, Nishikawa H et al (2003) Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage phi MR11. J Infect Dis 187:613–624

    PubMed  CAS  Google Scholar 

  112. Wills QF, Kerrigan C, Soothill JS (2005) Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob Agents Chemother 49:1220–1221

    PubMed  CAS  Google Scholar 

  113. Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659

    PubMed  CAS  Google Scholar 

  114. Fischetti VA (2011) Exploiting what phage have evolved to control gram-positive pathogens. Bacteriophage 1:188–194

    PubMed  Google Scholar 

  115. Daniel A, Euler C, Collin M et al (2010) Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 54:1603–1612

    PubMed  CAS  Google Scholar 

  116. Rashel M, Uchiyama J, Ujihara T et al (2007) Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11. J Infect Dis 196:1237–1247

    PubMed  CAS  Google Scholar 

  117. Obeso JM, Martinez B, Rodriguez A et al (2008) Lytic activity of the recombinant staphylococcal bacteriophage PhiH5 endolysin active against Staphylococcus aureus in milk. Int J Food Microbiol 128:212–218

    PubMed  CAS  Google Scholar 

  118. Sass P, Bierbaum G (2007) Lytic activity of recombinant bacteriophage phi11 and phi12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl Environ Microbiol 73:347–352

    PubMed  CAS  Google Scholar 

  119. Ghiselli R, Giacometti A, Cirioni O et al (2007) Pretreatment with the protegrin IB-367 affects Gram-positive biofilm and enhances the therapeutic efficacy of linezolid in animal models of central venous catheter infection. JPEN J Parenter Enteral Nutr 31:463–468

    PubMed  CAS  Google Scholar 

  120. Hiemstra PS, Fernie-King BA, McMichael J et al (2004) Antimicrobial peptides: mediators of innate immunity as templates for the development of novel anti-infective and immune therapeutics. Curr Pharm Des 10:2891–2905

    PubMed  CAS  Google Scholar 

  121. Stryjewski ME, Hall RP, Chu VH et al (2007) Expression of antimicrobial peptides in the normal and involved skin of patients with infective cellulitis. J Infect Dis 196:1425–1430

    PubMed  CAS  Google Scholar 

  122. Tokle TaM DJ (2011) Physicochemical properties of lactoferrin stabilized oil-in-water emulsions: effects of pH, salt and heating. Food Hydrocolloids 25:976–982

    Google Scholar 

  123. Peschel A (2002) How do bacteria resist human antimicrobial peptides? Trends Microbiol 10:179–186

    PubMed  CAS  Google Scholar 

  124. Zanetti M, Gennaro R, Skerlavaj B et al (2002) Cathelicidin peptides as candidates for a novel class of antimicrobials. Curr Pharm Des 8:779–793

    PubMed  CAS  Google Scholar 

  125. Lacasse P, Lauzon K, Diarra MS et al (2008) Utilization of lactoferrin to fight antibiotic-resistant mammary gland pathogens. J Anim Sci 86:66–71

    PubMed  CAS  Google Scholar 

  126. Velden WJ, van Iersel TM, Blijlevens NM et al (2009) Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11). BMC Med 7:44

    PubMed  Google Scholar 

  127. Cirioni O, Giacometti A, Ghiselli R et al (2006) Pre-treatment of central venous catheters with the cathelicidin BMAP-28 enhances the efficacy of antistaphylococcal agents in the treatment of experimental catheter-related infection. Peptides 27:2104–2110

    PubMed  CAS  Google Scholar 

  128. Faber C, Stallmann HP, Lyaruu DM et al (2005) Comparable efficacies of the antimicrobial peptide human lactoferrin 1-11 and gentamicin in a chronic methicillin-resistant Staphylococcus aureus osteomyelitis model. Antimicrob Agents Chemother 49:2438–2444

    PubMed  CAS  Google Scholar 

  129. Bradshaw J (2003) Cationic antimicrobial peptides : issues for potential clinical use. BioDrugs 17:233–240

    PubMed  CAS  Google Scholar 

  130. Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778:357–375

    PubMed  CAS  Google Scholar 

  131. Mullard A (2008) Immune evasion: overcoming defensins. Nat Rev Micro 6:415

    CAS  Google Scholar 

  132. Byrne FM, Wilcox MH (2011) MRSA prevention strategies and current guidelines. Injury 42(Suppl 5):S3–S6

    PubMed  Google Scholar 

  133. Edgeworth JD (2011) Has decolonization played a central role in the decline in UK methicillin-resistant Staphylococcus aureus transmission? A focus on evidence from intensive care. J Antimicrob Chemother 66(Suppl 2):ii41–ii47

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Aileen Rubio, Kien Nguyen, and Jared Silverman for reviewing the manuscript and Steven Luperchio for providing technical assistance with the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Daniel, A. (2014). Anti-infective Drug Development for MRSA. In: Ji, Y. (eds) Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols. Methods in Molecular Biology, vol 1085. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-664-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-664-1_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-663-4

  • Online ISBN: 978-1-62703-664-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics