Skip to main content

High-Pressure Fluorescence Applications

  • Protocol
  • First Online:
Fluorescence Spectroscopy and Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1076))

Abstract

Fluorescence is the most widely used technique to study the effect of pressure on biochemical systems. The use of pressure as a physical variable sheds light into volumetric characteristics of reactions. Here we focus on the effect of pressure on protein solutions using a simple unfolding example in order to illustrate the applications of the methodology. Topics covered in this review include the relationships between practical aspects and technical limitations; the effect of pressure and the study of protein cavities; the interpretation of thermodynamic and relaxation kinetics; and the study of relaxation amplitudes. Finally, we discuss the insights available from the combination of fluorescence and other methods adapted to high pressure, such as SAXS or NMR. Because of the simplicity and accessibility of high-pressure fluorescence, the technique is a starting point that complements appropriately multi-methodological approaches related to understanding protein function, disfunction, and folding from the volumetric point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Somero GN (1992) Adaptations to high hydrostatic pressure. Annu Rev Physiol 54:557–577

    Article  PubMed  CAS  Google Scholar 

  2. Abe F, Horikoshi K (2001) The biotechnological potential of piezophiles. Trends Biotechnol 19(3):102–108

    Article  PubMed  CAS  Google Scholar 

  3. Daniel I, Oger P, Winter R (2006) Origins of life and biochemistry under high-pressure conditions. Chem Soc Rev 35(10):858–875

    Article  PubMed  CAS  Google Scholar 

  4. Matthews BW (2012) Proteins under pressure. Proc Natl Acad Sci USA 109(18):6792–6793

    Article  PubMed  CAS  Google Scholar 

  5. Markley JL, Northrop DB, Royer CA (eds) (1996) High pressure effects in biophysics and enzymology. Oxford University Press, Oxford, p 381. ISBN: 9780195097221

    Google Scholar 

  6. Bridgman PW (1914) The coagulation of albumen by pressure J. Biol Chem 19:511–512

    CAS  Google Scholar 

  7. Suzuki K, Miyosawa Y, Suzuki C (1963) Protein denaturation by high pressure. Measurements of turbidity of isoelectric ovalbumin and horse serum albumin under high pressure. Arch Biochem Biophys 101:225–228

    Article  PubMed  CAS  Google Scholar 

  8. Weber G, Tanaka F, Okamoto BY, Drickamer HG (1974) The effect of pressure on the molecular complex of isoalloxazine and adenine. Proc Natl Acad Sci USA 71(4):1264–1266

    Article  PubMed  CAS  Google Scholar 

  9. Mueller JD, Gratton E (2003) High-pressure fluorescence correlation spectroscopy. Biophys J 85(4):2711–2719

    Article  CAS  Google Scholar 

  10. Harris RD, Jacobs M, Long MM, Urry DW (1976) A high-pressure sample cell for circular dichroism studies. Anal Biochem 73(2):363–368

    Article  PubMed  CAS  Google Scholar 

  11. Hayashi R, Kakehi Y, Kato M, Tanimizu N, Ozawa S, Matsumoto M, Kawai S, Pudney P (2002) Circular dichroism under high pressure. In: Rikimaru H (ed) Trends in high pressure bioscience and technology, vol. 19. Elsevier Science B.V., Amsterdam, p 579–586. http://www.sciencedirect.com/science/article/pii/S0921042302801575

  12. Panick G, Malessa R, Winter R et al (1998) Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy. J Mol Biol 275(2):389–402

    Article  PubMed  CAS  Google Scholar 

  13. Panick G, Malessa R, Winter R (1999) Differences between the pressure- and temperature-induced denaturation and aggregation of beta-lactoglobulin A, B, and AB monitored by FT-IR spectroscopy and small-angle X-ray scattering. Biochemistry 38(20):6512–6519

    Article  PubMed  CAS  Google Scholar 

  14. McCoy J, Hubbell WL (2011) High-pressure EPR reveals conformational equilibria and volumetric properties of spin-labeled proteins. Proc Natl Acad Sci USA 108(4):1331–1336

    Article  PubMed  CAS  Google Scholar 

  15. Jonas J, Ballard L, Nash D (1998) High-resolution, high-pressure NMR studies of proteins. Biophys J 75(1):445–452

    Article  PubMed  CAS  Google Scholar 

  16. Kamatari YO, Kitahara R, Yamada H, Yokoyama S et al (2004) High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins. Methods 34(1):133–143

    Article  PubMed  CAS  Google Scholar 

  17. Lassalle MW, Akasaka K (2007) The use of high-pressure nuclear magnetic resonance to study protein folding. Methods Mol Biol 350:21–38

    PubMed  CAS  Google Scholar 

  18. Collins MD, Kim CU, Gruner SM (2011) High-pressure protein crystallography and NMR to explore protein conformations. Annu Rev Biophys 40:81–98

    Article  PubMed  CAS  Google Scholar 

  19. Woenckhaus J, Kohling R, Winter R, Thiyagarajan P et al (2000) High pressure-jump apparatus for kinetic studies of protein folding reactions using the small-angle synchrotron x-ray scattering technique. Rev Sci Instrum 71(10):3895–3899

    Article  CAS  Google Scholar 

  20. Ando N, Chenevier P, Novak M et al (2008) High hydrostatic pressure small-angle X-ray scattering cell for protein solution studies featuring diamond windows and disposable sample cells. J Appl Crystallogr 41(1):167–175

    Article  CAS  Google Scholar 

  21. Paliwal A, Asthagiri D, Bossev DP, Paulaitis ME (2004) Pressure denaturation of staphylococcal nuclease studied by neutron small-angle scattering and molecular simulation. Biophys J 87(5):3479–3492

    Article  PubMed  CAS  Google Scholar 

  22. Stefanowicz P, Petry-Podgorska I, Kowalewska K et al (2009) Electrospray ionization mass spectrometry as a method for studying the high-pressure denaturation of proteins. Biosci Rep 30(2):91–99

    Article  PubMed  CAS  Google Scholar 

  23. Balny C, Masson P, Travers F (1989) Some recent aspects of the use of high-pressure for protein investigations in solution. High Pressure Res 2(1):1–28

    Article  Google Scholar 

  24. Lin LN, Brandts JF, Brandts JM, Plotnikov V (2002) Determination of the volumetric properties of proteins and other solutes using pressure perturbation calorimetry. Anal Biochem 302(1):144–160

    Article  PubMed  CAS  Google Scholar 

  25. Royer CA (2002) Revisiting volume changes in pressure-induced protein unfolding. Biochim Biophys Acta 1595(1–2):201–209

    Article  PubMed  CAS  Google Scholar 

  26. St John RJ, Carpenter JF, Balny C, Randolph TW (2001) High pressure refolding of recombinant human growth hormone from insoluble aggregates. Structural transformations, kinetic barriers, and energetics. J Biol Chem 276(50):46856–46863

    Article  PubMed  CAS  Google Scholar 

  27. St John RJ, Carpenter JF, Randolph TW (2002) High-pressure refolding of disulfide-cross-linked lysozyme aggregates: thermodynamics and optimization. Biotechnol Prog 18(3):565–571

    Article  PubMed  CAS  Google Scholar 

  28. Seefeldt MB, Ouyang J, Froland WA et al (2004) High-pressure refolding of bikunin: efficacy and thermodynamics. Protein Sci 13(10):2639–2650

    Article  PubMed  CAS  Google Scholar 

  29. Kim YS, Randolph TW, Seefeldt MB, Carpenter JF (2006) High-pressure studies on protein aggregates and amyloid fibrils. Methods Enzymol 413:237–253

    Article  PubMed  CAS  Google Scholar 

  30. Weber G (1986) Phenomenological description of the association of protein subunits subjected to conformational drift. Effects of dilution and of hydrostatic pressure. Biochemistry 25(12):3626–3631

    Article  PubMed  CAS  Google Scholar 

  31. Royer CA, Weber G, Daly TJ, Matthews KS (1986) Dissociation of the lactose repressor protein tetramer using high hydrostatic pressure. Biochemistry 25(25):8308–8315

    Article  PubMed  CAS  Google Scholar 

  32. Silva JL, Miles EW, Weber G (1986) Pressure dissociation and conformational drift of the beta dimer of tryptophan synthase. Biochemistry 25(19):5780–5786

    Article  PubMed  CAS  Google Scholar 

  33. Scarlata SF, Ropp T, Royer CA (1989) Histone subunit interactions as investigated by high pressure. Biochemistry 28(16):6637–6641

    Article  PubMed  CAS  Google Scholar 

  34. Pin S, Royer CA, Gratton E et al (1990) Subunit interactions in hemoglobin probed by fluorescence and high-pressure techniques. Biochemistry 29(39):9194–9202

    Article  PubMed  CAS  Google Scholar 

  35. Silva JL, Silveira CF, Correia Junior A, Pontes L (1992) Dissociation of a native dimer to a molten globule monomer. Effects of pressure and dilution on the association equilibrium of arc repressor. J Mol Biol 223(2):545–555

    Article  PubMed  CAS  Google Scholar 

  36. Pin S, Royer CA (1994) High-pressure fluorescence methods for observing subunit dissociation in hemoglobin. Methods Enzymol 232:42–55

    Article  PubMed  CAS  Google Scholar 

  37. Herberhold H, Marchal S, Lange R et al (2003) Characterization of the pressure-induced intermediate and unfolded state of red-shifted green fluorescent protein–a static and kinetic FTIR, UV/VIS and fluorescence spectroscopy study. J Mol Biol 330(5):1153–1164

    Article  PubMed  CAS  Google Scholar 

  38. Valente-Mesquita VL, Botelho MM, Ferreira ST (1998) Pressure-induced subunit dissociation and unfolding of dimeric beta-lactoglobulin. Biophys J 75(1):471–476

    Article  PubMed  CAS  Google Scholar 

  39. Foguel D, Silva JL, de Prat-Gay G (1998) Characterization of a partially folded monomer of the DNA-binding domain of human papillomavirus E2 protein obtained at high pressure. J Biol Chem 273(15):9050–9057

    Article  PubMed  CAS  Google Scholar 

  40. Gorovits B, Raman CS, Horowitz PM (1995) High hydrostatic pressure induces the dissociation of cpn60 tetradecamers and reveals a plasticity of the monomers. J Biol Chem 270(5):2061–2066

    Article  PubMed  CAS  Google Scholar 

  41. Heremans K, Smeller L (1998) Protein structure and dynamics at high pressure. Biochim Biophys Acta 1386(2):353–370

    Article  PubMed  CAS  Google Scholar 

  42. Zhang J, Peng X, Jonas A, Jonas J (1995) NMR study of the cold, heat, and pressure unfolding of ribonuclease A. Biochemistry 34(27):8631–8641

    Article  PubMed  CAS  Google Scholar 

  43. Herberhold H, Winter R (2002) Temperature- and pressure-induced unfolding and refolding of ubiquitin: a static and kinetic Fourier transform infrared spectroscopy study. Biochemistry 41(7):2396–2401

    Article  PubMed  CAS  Google Scholar 

  44. Panick G, Vidugiris GJ, Malessa R et al (1999) Exploring the temperature-pressure phase diagram of staphylococcal nuclease. Biochemistry 38(13):4157–4164

    Article  PubMed  CAS  Google Scholar 

  45. Ravindra R, Winter R (2003) On the temperature–pressure free-energy landscape of proteins. Chemphyschem 4(4):359–365

    Article  PubMed  CAS  Google Scholar 

  46. Smeller L (2002) Pressure-temperature phase diagrams of biomolecules. Biochim Biophys Acta 1595(1–2):11–29

    Article  PubMed  CAS  Google Scholar 

  47. Heremans K (1980) Biophysical chemistry at high pressure. Rev Phys Chem Jpn 50:259–273

    Google Scholar 

  48. Lima LM, Foguel D, Silva JL (2000) DNA tightens the dimeric DNA-binding domain of human papillomavirus E2 protein without changes in volume. Proc Natl Acad Sci USA 97(26):14289–14294

    Article  PubMed  CAS  Google Scholar 

  49. Royer CA, Chakerian AE, Matthews KS (1990) Macromolecular binding equilibria in the lac repressor system: studies using high-pressure fluorescence spectroscopy. Biochemistry 29(20):4959–4966

    Article  PubMed  CAS  Google Scholar 

  50. Herberhold H, Royer CA, Winter R (2004) Effects of chaotropic and kosmotropic cosolvents on the pressure-induced unfolding and denaturation of proteins: an FT-IR study on staphylococcal nuclease. Biochemistry 43(12):3336–3345

    Article  PubMed  CAS  Google Scholar 

  51. Oliveira AC, Gaspar LP, Da Poian AT, Silva JL (1994) Arc repressor will not denature under pressure in the absence of water. J Mol Biol 240(3):184–187

    Article  PubMed  CAS  Google Scholar 

  52. Krywka C, Sternemann C, Paulus M et al (2008) Effect of osmolytes on pressure-induced unfolding of proteins: a high-pressure SAXS study. Chemphyschem 9(18):2809–2815

    Article  PubMed  CAS  Google Scholar 

  53. Wang S, Tate MW, Gruner SM (2012) Protein crowding impedes pressure-induced unfolding of staphylococcal nuclease. Biochim Biophys Acta 1820(7):957–961

    Article  PubMed  CAS  Google Scholar 

  54. Frye KJ, Royer CA (1997) The kinetic basis for the stabilization of staphylococcal nuclease by xylose. Protein Sci 6(4):789–793

    Article  PubMed  CAS  Google Scholar 

  55. King L, Weber G (1986) Conformational drift of dissociated lactate dehydrogenases. Biochemistry 25(12):3632–3637

    Article  PubMed  CAS  Google Scholar 

  56. Fujisawa T, Kato M, Inoko Y (1999) Structural characterization of lactate dehydrogenase dissociation under high pressure studied by synchrotron high-pressure small-angle X-ray scattering. Biochemistry 38(20):6411–6418

    Article  PubMed  CAS  Google Scholar 

  57. Ando N (2009) Biomacromolecules under high hydrostatic pressure. In: Department of Physics. Cornell University, Ithaca, NY, pp 221 http://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CF4QFjAA&url=http%3A%2F%2Fbigbro.biophys.cornell.edu%2Fpublications%2Ff26%2520Ando%2520PhD%2520thesis.pdf&ei=5wUsUJWROcq50QXl5YG4Aw&usg=AFQjCNEH7ffkJeYKGtdisUpi9JXZvs9i7Q

  58. Ando N, Barstow B, Baase WA, Fields A, Matthews BW, Gruner SM (2008) Structural and thermodynamic characterization of T4 lysozyme mutants and the contribution of internal cavities to pressure denaturation. Biochemistry 47(42):11097–11109

    Article  PubMed  CAS  Google Scholar 

  59. Rouget JB, Schroer MA, Jeworrek C et al (2010) Unique features of the folding landscape of a repeat protein revealed by pressure perturbation. Biophys J 98(11):2712–2721

    Article  PubMed  CAS  Google Scholar 

  60. Hawley SA (1971) Reversible pressure–temperature denaturation of chymotrypsinogen. Biochemistry 10(13):2436–2442

    Article  PubMed  CAS  Google Scholar 

  61. Zipp A, Kauzmann W (1973) Pressure denaturation of metmyoglobin. Biochemistry 12(21):4217–4228

    Article  PubMed  CAS  Google Scholar 

  62. Schade BC, Rudolph R, Ludemann HD, Jaenicke R (1980) Reversible high-pressure dissociation of lactic dehydrogenase from pig muscle. Biochemistry 19(6):1121–1126

    Article  PubMed  CAS  Google Scholar 

  63. Royer CA (1995) Application of pressure to biochemical equilibria: the other thermodynamic variable. Methods Enzymol 259:357–377

    Article  PubMed  CAS  Google Scholar 

  64. Mohana-Borges R, Lima Silva J, de Prat-Gay G (1999) Protein folding in the absence of chemical denaturants. Reversible pressure denaturation of the noncovalent complex formed by the association of two protein fragments. J Biol Chem 274(12):7732–7740

    Article  PubMed  CAS  Google Scholar 

  65. Torrent J, Connelly JP, Coll MG et al (1999) Pressure versus heat-induced unfolding of ribonuclease A: the case of hydrophobic interactions within a chain-folding initiation site. Biochemistry 38(48):15952–15961

    Article  PubMed  CAS  Google Scholar 

  66. Ishimaru D, Lima LM, Maia LF et al (2004) Reversible aggregation plays a crucial role on the folding landscape of p53 core domain. Biophys J 87(4):2691–2700

    Article  PubMed  CAS  Google Scholar 

  67. Tan CY, Xu CH, Wong J et al (2005) Presssure equilibrium and jump study on unfolding of 23-kDa protein from spinach photosystem II. Biophys J 88(2):1264–1275

    Article  PubMed  CAS  Google Scholar 

  68. Brandts JF, Oliveira RJ, Westort C (1970) Thermodynamics of protein denaturation. Effect of pressure on the denaturation of ribonuclease A. Biochemistry 9(4):1038–1047

    Article  PubMed  CAS  Google Scholar 

  69. Weber G, Drickamer HG (1983) The effect of high pressure upon proteins and other biomolecules. Q Rev Biophys 16(1):89–112

    Article  PubMed  CAS  Google Scholar 

  70. Hummer G, Garde S, Garcia AE et al (1998) The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc Natl Acad Sci USA 95:1552–1555

    Article  PubMed  CAS  Google Scholar 

  71. Collins MD, Hummer G, Quillin ML et al (2005) Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation. Proc Natl Acad Sci USA 102(46):16668–16671

    Article  PubMed  CAS  Google Scholar 

  72. Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum Press, New York

    Book  Google Scholar 

  73. Gross M, Jaenicke R (1994) Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur J Biochem 221(2):617–630

    Article  PubMed  CAS  Google Scholar 

  74. Molina-Garcia AD (2002) The effect of hydrostatic pressure on biological systems. Biotechnol Genet Eng Rev 19:3–54

    Article  PubMed  CAS  Google Scholar 

  75. Ando N (2006) High hydrostatic pressure effect on proteins: fluorescence studies. In: Encyclopedia of analytical chemistry, Wiley. http://dx.doi.org/10.1002/9780470027318.a9246

  76. Torrent J, Font J, Herberhold H et al (2006) The use of pressure-jump relaxation kinetics to study protein folding landscapes. Biochim Biophys Acta 1764(3):489–496

    Article  PubMed  CAS  Google Scholar 

  77. Ruan K, Balny C (2002) High pressure static fluorescence to study macromolecular structure-function. Biochim Biophys Acta 1595(1–2):94–102

    Article  PubMed  CAS  Google Scholar 

  78. Silva JL, Foguel D, Royer CA (2001) Pressure provides new insights into protein folding, dynamics and structure. Trends Biochem Sci 26(10):612–618

    Article  PubMed  CAS  Google Scholar 

  79. Royer CA, Hinck AP, Loh SN et al (1993) Effects of amino acid substitutions on the pressure denaturation of staphylococcal nuclease as monitored by fluorescence and nuclear magnetic resonance spectroscopy. Biochemistry 32(19):5222–5232

    Article  PubMed  CAS  Google Scholar 

  80. Vidugiris GJA, Truckses DM, Markley JL, Royer CA (1996) High-pressure denaturation of staphylococcal nuclease proline-to-glycine substitution mutants. Biochemistry 35:3857–3864

    Article  PubMed  CAS  Google Scholar 

  81. Frye KJ, Perman CS, Royer CA (1996) Testing the correlation between delta A and delta V of protein unfolding using m value mutants of staphylococcal nuclease. Biochemistry 35(31):10234–10239

    Article  PubMed  CAS  Google Scholar 

  82. Frye KJ, Royer CA (1998) Probing the contribution of internal cavities to the volume chnage of protein unfolding under pressure. Protein Sci 7:2217–2222

    Article  PubMed  CAS  Google Scholar 

  83. Seemann H, Winter R, Royer CA (2001) Volume, expansivity and isothermal compressibility changes associated with temperature and pressure unfolding of Staphylococcal nuclease. J Mol Biol 307(4):1091–1102

    Article  PubMed  CAS  Google Scholar 

  84. Woenckhaus J, Kohling R, Thiyagarajan P et al (2001) Pressure-jump small-angle x-ray scattering detected kinetics of staphylococcal nuclease folding. Biophys J 80(3):1518–1523

    Article  PubMed  CAS  Google Scholar 

  85. Mitra L, Rouget JB, Garcia-Moreno B et al (2008) Towards a quantitative understanding of protein hydration and volumetric properties. Chemphyschem 9(18):2715–2721

    Article  PubMed  CAS  Google Scholar 

  86. Kitahara R, Hata K, Maeno A et al (2011) Structural plasticity of staphylococcal nuclease probed by perturbation with pressure and pH. Proteins 79(4):1293–1305

    Article  PubMed  CAS  Google Scholar 

  87. Roche J, Caro JA, Norberto DR et al (2012) Cavities determine the pressure unfolding of proteins. Proc Natl Acad Sci USA 109(18):6945–6950

    Article  PubMed  CAS  Google Scholar 

  88. Lassalle MW, Yamada H, Akasaka K (2000) The pressure-temperature free energy-landscape of staphylococcal nuclease monitored by (1)H NMR. J Mol Biol 298(2):293–302

    Article  PubMed  CAS  Google Scholar 

  89. Brun L, Isom DG, Velu P et al (2006) Hydration of the folding transition state ensemble of a protein. Biochemistry 45(11):3473–3480

    Article  PubMed  CAS  Google Scholar 

  90. Bernasconi CF (1976) Relaxation kinetics. In: Claude F (ed) Bernasconi. Academic, New York

    Google Scholar 

  91. Girdhar K, Scott G, Chemla YR, Gruebele M (2011) Better biomolecule thermodynamics from kinetics. J Chem Phys 135(1):015102

    Article  PubMed  CAS  Google Scholar 

  92. Paladini AA, Weber G (1981) Absolute measurements of fluorescence polarization at high pressures. Rev Sci Instrum 52(3):419–427

    Article  CAS  Google Scholar 

  93. Balny C, Saldana JL, Dahan N (1987) High-pressure stopped-flow fluorometry at subzero temperatures: application to kinetics of the binding of NADH to liver alcohol dehydrogenase. Anal Biochem 163(2):309–315

    Article  PubMed  CAS  Google Scholar 

  94. Good NE, Winget GD, Winter W et al (1966) Hydrogen ion buffers for biological research. Biochemistry 5(2):467–477

    Article  PubMed  CAS  Google Scholar 

  95. Quinlan RJ, Reinhart GD (2005) Baroresistant buffer mixtures for biochemical analyses. Anal Biochem 341(1):69–76

    Article  PubMed  CAS  Google Scholar 

  96. Distèche A (1972) Effects of pressure on the dissociation of weak acids. Symp Soc Exp Biol 26:27–60

    PubMed  Google Scholar 

  97. Shortle D (1986) Guanidine hydrochloride denaturation studies of mutant forms of staphylococcal nuclease. J Cell Biochem 30(4):281–289

    Article  PubMed  CAS  Google Scholar 

  98. Eftink MR, Gryczynski I, Wiczk W et al (1991) Effects of temperature on the fluorescence intensity and anisotropy decays of staphylococcal nuclease and the less stable nuclease-conA-SG28 mutant. Biochemistry 30(37):8945–8953

    Article  PubMed  CAS  Google Scholar 

  99. Royer CA (1985) The use of high pressure fluorescence spectroscopy to investigate subunit interactions in oligomeric proteins. University of Illinois at Urbana-Champaign, Urbana, IL, pp 364

    Google Scholar 

  100. Cioni P (2006) Role of protein cavities on unfolding volume change and on internal dynamics under pressure. Biophys J 91(9):3390–3396

    Article  PubMed  CAS  Google Scholar 

  101. Botelho MM, Valente-Mesquita VL, Oliveira KM et al (2000) Pressure denaturation of beta-lactoglobulin. Different stabilities of isoforms A and B, and an investigation of the Tanford transition. Eur J Biochem 267(8):2235–2241

    Article  PubMed  CAS  Google Scholar 

  102. Lassalle MW, Yamada H, Morii H et al (2001) Filling a cavity dramatically increases pressure stability of the c-Myb R2 subdomain. Proteins 45(1):96–101

    Article  PubMed  CAS  Google Scholar 

  103. Royer C, Winter R (2011) Protein hydration and volumetric properties. Curr Opin Colloid Inter Sci 16(6):568–571

    Article  CAS  Google Scholar 

  104. Eigen M, de Maeyer L (1963) Techniques of organic chemistry, In: Weissberger A (ed), vol 8. Interscience Publishers, New York, p. 865. http://books.google.fr/books?id=A58hAQAAMAAJ

  105. Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3(2):107–115

    Article  CAS  Google Scholar 

  106. Matthews CR, Crisanti MM, Manz JT, Gepner GL (1983) Effect of a single amino acid substitution on the folding of the alpha subunit of tryptophan synthase. Biochemistry 22(6):1445–1452

    Article  PubMed  CAS  Google Scholar 

  107. Chan HS, Dill KA (1998) Protein folding in the landscape perspective: chevron plots and non-Arrhenius kinetics. Proteins 30(1):2–33

    Article  PubMed  CAS  Google Scholar 

  108. Rouget JB, Aksel T, Roche J et al (2011) Size and sequence and the volume change of protein folding. J Am Chem Soc 133(15):6020–6027

    Article  PubMed  CAS  Google Scholar 

  109. Bachmann A, Kiefhaber T (2008) Kinetic mechanisms in protein folding. In: Protein folding Handbook. Wiley, Weinheim, pp 377–410. http://dx.doi.org/10.1002/9783527619498.ch12a

  110. Stites WE, Gittis AG, Lattman EE, Shortle D (1991) In a staphylococcal nuclease mutant the side-chain of a lysine replacing valine 66 is fully buried in the hydrophobic core. J Mol Biol 221(1):7–14

    Article  PubMed  CAS  Google Scholar 

  111. Mitra L, Hata K, Kono R et al (2007) V(i)-value analysis: a pressure-based method for mapping the folding transition state ensemble of proteins. J Am Chem Soc 129(46):14108–14109

    Article  PubMed  CAS  Google Scholar 

  112. Vidugiris GJA, Markley JL, Royer CA (1995) Evidence for a molten globule-like transition state in protein folding from determination of activation volumes. Biochemistry 34:4909–4912

    Article  PubMed  CAS  Google Scholar 

  113. Desai G, Panick G, Zein M et al (1999) Pressure-jump studies of the folding/unfolding of trp repressor. J Mol Biol 288(3):461–475

    Article  PubMed  CAS  Google Scholar 

  114. Jacob MH, Saudan C, Holtermann G et al (2002) Water contributes actively to the rapid crossing of a protein unfolding barrier. J Mol Biol 318(3):837–845

    Article  PubMed  CAS  Google Scholar 

  115. Kitahara R, Royer C, Yamada H et al (2002) Equilibrium and pressure-jump relaxation studies of the conformational transitions of P13MTCP1. J Mol Biol 320(3):609–628

    Article  PubMed  CAS  Google Scholar 

  116. Mohana-Borges R, Silva JL, Ruiz-Sanz J, Gd PG (1999) Folding of a pressure-denatured model protein. Proc Natl Acad Sci USA 96(14):7888–7893

    Article  PubMed  CAS  Google Scholar 

  117. Pappenberger G, Saudan C, Becker M et al (2000) Denaturant-induced movement of the transition state of protein folding revealed by high pressure stopped-flow measurements. Proc Natl Acad Sci USA 97:17–22

    Article  PubMed  CAS  Google Scholar 

  118. Osvath S, Quynh LM, Smeller L (2009) Thermodynamics and kinetics of the pressure unfolding of phosphoglycerate kinase. Biochemistry 48(42):10146–10150

    Article  PubMed  CAS  Google Scholar 

  119. Fersht AR, Sato S (2004) Phi-value analysis and the nature of protein-folding transition states. Proc Natl Acad Sci USA 101(21):7976–7981

    Article  PubMed  CAS  Google Scholar 

  120. Fersht AR (1985) Enzyme structures and mechanisms. W. H. Freeman & Co., New York

    Google Scholar 

  121. Ohmae E, Murakami C, Tate S et al (2012) Pressure dependence of activity and stability of dihydrofolate reductases of the deep-sea bacterium Moritella profunda and Escherichia coli. Biochim Biophys Acta 1824(3):511–519

    Article  PubMed  CAS  Google Scholar 

  122. Keenan JH, Moore JG, Hill PG, Keyes FG (1969) Steam tables: thermodynamic properties of water including vapor, liquid, and solid phases (english units). In: Wiley JS (ed) Incorporated, http://books.google.fr/books/about/Steam_tables.html?id=HgVRAAAAMAAJ&redir_esc=y

  123. Rene-Trouillefou M, Benzaria A, Marchal S et al (2010) Staphylococcal enterotoxin A: partial unfolding caused by high pressure or denaturing agents enhances superantigenicity. Biochim Biophys Acta 1804(6):1322–1333

    Article  PubMed  CAS  Google Scholar 

  124. Goncalves RB, Sanches D, Souza TL et al (2008) The proapoptotic protein Smac/DIABLO dimer has the highest stability as measured by pressure and urea denaturation. Biochemistry 47(12):3832–3841

    Article  PubMed  CAS  Google Scholar 

  125. Chatani E, Kato M, Kawai T et al (2005) Main-chain dominated amyloid structures demonstrated by the effect of high pressure. J Mol Biol 352(4):941–951

    Article  PubMed  CAS  Google Scholar 

  126. Grudzielanek S, Smirnovas V, Winter R (2006) Solvation-assisted pressure tuning of insulin fibrillation: from novel aggregation pathways to biotechnological applications. J Mol Biol 356(2):497–509

    Article  PubMed  CAS  Google Scholar 

  127. Goncalves RB, Mendes YS, Soares MR et al (2007) VP4 protein from human rhinovirus 14 is released by pressure and locked in the capsid by the antiviral compound WIN. J Mol Biol 366(1):295–306

    Article  PubMed  CAS  Google Scholar 

  128. Li TM, Hook JW 3rd, Drickamer HG, Weber G (1976) Plurality of pressure-denatured forms in chymotrypsinogen and lysozyme. Biochemistry 15(25):5571–5580

    Article  PubMed  CAS  Google Scholar 

  129. Gaspar LP, Terezan AF, Pinheiro AS et al (2001) The metastable state of nucleocapsids of enveloped viruses as probed by high hydrostatic pressure. J Biol Chem 276(10):7415–7421

    Article  PubMed  CAS  Google Scholar 

  130. Ruan K, Xu C, Yu Y et al (2001) Pressure-exploration of the 33-kDa protein from the spinach photosystem II particle. Eur J Biochem 268(9):2742–2750

    Article  PubMed  CAS  Google Scholar 

  131. Souza MO, Creczynski-Pasa TB, Scofano HM et al (2004) High hydrostatic pressure perturbs the interactions between CF(0)F(1) subunits and induces a dual effect on activity. Int J Biochem Cell Biol 36(5):920–930

    Article  PubMed  CAS  Google Scholar 

  132. Marchal S, Shehi E, Harricane MC et al (2003) Structural instability and fibrillar aggregation of non-expanded human ataxin-3 revealed under high pressure and temperature. J Biol Chem 278(34):31554–31563

    Article  PubMed  CAS  Google Scholar 

  133. Yamamoto S, Otsuka Y, Borjigin G et al (2005) Effects of a high-pressure treatment on the activity and structure of rabbit muscle proteasome. Biosci Biotechnol Biochem 69(7):1239–1247

    Article  PubMed  CAS  Google Scholar 

  134. Rietveld AW, Ferreira ST (1996) Deterministic pressure dissociation and unfolding of triose phosphate isomerase: persistent heterogeneity of a protein dimer. Biochemistry 35(24):7743–7751

    Article  PubMed  CAS  Google Scholar 

  135. Akasaka K, Li H (2001) Low-lying excited states of proteins revealed from nonlinear pressure shifts in 1H and 15N NMR. Biochemistry 40(30):8665–8671

    Article  PubMed  CAS  Google Scholar 

  136. Ruan K, Lange R, Meersman F et al (1999) Fluorescence and FTIR study of the pressure-induced denaturation of bovine pancreas trypsin. Eur J Biochem 265(1):79–85

    Article  PubMed  CAS  Google Scholar 

  137. Wolfenden R, Radzicka A (1994) On the probability of finding a water molecule in a nonpolar cavity. Science 265(5174):936–937

    Article  PubMed  CAS  Google Scholar 

  138. Hendrix DK, Kuntz ID (1998) Surface solid angle-based site points for molecular docking. Pac Symp Biocomput 317–326. http://www.ncbi.nlm.nih.gov/pubmed/9697192

  139. Ho BK, Gruswitz F (2008) HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct Biol 8:49

    Article  PubMed  Google Scholar 

  140. Till MS, Ullmann GM (2010) McVol—a program for calculating protein volumes and identifying cavities by a Monte Carlo algorithm. J Mol Model 16(3):419–429

    Article  PubMed  CAS  Google Scholar 

  141. Kleywegt GJ, Jones TA (1994) Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr D Biol Crystallogr 50(Pt 2):178–185

    Article  PubMed  CAS  Google Scholar 

  142. Petrek M, Otyepka M, Banas P et al (2006) CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7:316

    Article  PubMed  CAS  Google Scholar 

  143. Bugnon P, Laurenczy G, Ducommun Y et al (1996) High-pressure stopped-flow spectrometer for kinetic studies of fast reactions by absorbance anbd fluorescence detection. Analyt Chem 68:3045–3049

    Article  CAS  Google Scholar 

  144. Schanda P, Brutscher B (2006) Hadamard frequency-encoded SOFAST-HMQC for ultrafast two-dimensional protein NMR. J Magn Reson 178(2):334–339

    Article  PubMed  CAS  Google Scholar 

  145. Vidugiris GJ, Royer CA (1998) Determination of the volume changes for pressure-induced transitions of apomyoglobin between the native, molten globule, and unfolded states. Biophys J 75(1):463–470

    Article  PubMed  CAS  Google Scholar 

  146. Kitahara R, Simorellis AK, Hata K, Maeno A, Yokoyama S, Koide S, Akasaka K (2012) A delicate interplay of structure, dynamics, and thermodynamics for function: a high pressure NMR study of outer surface protein A. Biophys J 102(4):916–926

    Article  PubMed  CAS  Google Scholar 

  147. Shah BR, Maeno A, Matsuo H, Tachibana H, Akasaka K (2012) Pressure-accelerated dissociation of amyloid fibrils in wild-type hen lysozyme. Biophys J 102(1):121–126

    Article  PubMed  CAS  Google Scholar 

  148. DeLano W (2002) The PyMOL molecular graphics system. DeLano Scientific, Palo Alto, Ca, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dellarole, M., Royer, C.A. (2014). High-Pressure Fluorescence Applications. In: Engelborghs, Y., Visser, A. (eds) Fluorescence Spectroscopy and Microscopy. Methods in Molecular Biology, vol 1076. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-649-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-649-8_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-648-1

  • Online ISBN: 978-1-62703-649-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics