Skip to main content

Quantitative Measurement of Ca2+ and Zn2+ in Mammalian Cells Using Genetically Encoded Fluorescent Biosensors

  • Protocol
  • First Online:
Fluorescent Protein-Based Biosensors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1071))

Abstract

Genetically encoded, ratiometric, fluorescent biosensors can be used to quantitatively measure intracellular ion concentrations in living cells. We describe important factors to consider when selecting a Ca2+ or Zn2+ biosensor, such as the sensor’s dissociation constant (K d′) and its dynamic range. We also discuss the limits of quantitative measurement using these sensors and reasons why a sensor may perform differently in different biological systems or subcellular compartments. We outline protocols for (1) quickly confirming sensor functionality in a new biological system, (2) calibrating a sensor to convert a sensor’s FRET ratio to ion concentration, and (3) titrating a sensor in living cells to obtain its K d′ under different experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  2. Zhang J, Campbell RE, Ting AY et al (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    Article  PubMed  CAS  Google Scholar 

  3. Vinkenborg JL, Nicolson TJ, Bellomo EA et al (2009) Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nat Methods 6:737–740

    Article  PubMed  CAS  Google Scholar 

  4. Palmer A, Giacomello M, Kortemme T et al (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13:521–530

    Article  PubMed  CAS  Google Scholar 

  5. Qin Y, Dittmer PJ, Park JG et al (2011) Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors. Proc Natl Acad Sci U S A 108:7351–7356

    Article  PubMed  CAS  Google Scholar 

  6. Horikawa K, Yamada Y, Matsuda T et al (2010) Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nat Methods 7:729–732

    Article  PubMed  CAS  Google Scholar 

  7. Tian L, Hires SA, Mao T et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  PubMed  CAS  Google Scholar 

  8. Yamada Y, Michikawa T, Hashimoto M et al (2011) Quantitative comparison of genetically encoded Ca indicators in cortical pyramidal cells and cerebellar Purkinje cells. Front Cell Neurosci 5:18

    Article  PubMed  CAS  Google Scholar 

  9. Newman RH, Fosbrink MD, Zhang J (2011) Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 111:3614–3666

    Article  PubMed  CAS  Google Scholar 

  10. Davidson MW, Campbell RE (2009) Engineered fluorescent proteins: innovations and applications. Nat Methods 6:713–717

    Article  PubMed  CAS  Google Scholar 

  11. Nagai T, Yamada S, Tominaga T et al (2004) Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 101:10554–10559

    Article  PubMed  CAS  Google Scholar 

  12. Palmer AE, Jin C, Reed JC et al (2004) Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci U S A 101:17404–17409

    Article  PubMed  CAS  Google Scholar 

  13. Mank M, Santos AF, Direnberger S et al (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5:805–811

    Article  PubMed  CAS  Google Scholar 

  14. Tsien R, Pozzan T (1989) Measurement of cytosolic free Ca2+ with quin2. Methods Enzymol 172:230–262

    Article  PubMed  CAS  Google Scholar 

  15. Cheng KL, Ueno K, Imamura T (1982) CRC handbook of organic analytical reagents. CRC, Boca Raton, FL

    Google Scholar 

  16. Smith RM, Martell AE, Motekaitis RJ (2004) NIST critically selected stability constants of metal complexes database. NIST, Gaithersburg, MD

    Google Scholar 

  17. Kao JPY, Li G, Auston DA (2010) Chapter 5 – Practical aspects of measuring intracellular calcium signals with fluorescent indicators. Methods Cell Biol 99:113–152

    Article  PubMed  CAS  Google Scholar 

  18. Dean KM, Qin Y, Palmer A (2012) Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes. Biochem Biophys Acta 1823(9):1406–1415

    Article  PubMed  CAS  Google Scholar 

  19. Palmer A, Tsien R (2006) Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc 1:1057–1065

    Article  PubMed  CAS  Google Scholar 

  20. Tian L, Hires SA, Looger L (2012) Imaging neuronal activity with genetically encoded calcium indicators. Cold Spring Harb Protoc 2012(6):647–656

    Article  PubMed  Google Scholar 

  21. Evers TH, Appelhof MA, de Graaf-Heuvelmans PT et al (2007) Ratiometric detection of Zn(II) using chelating fluorescent protein chimeras. J Mol Biol 374:411–425

    Article  PubMed  CAS  Google Scholar 

  22. Emmanouilidou E, Teschemacher AG, Pouli AE et al (1999) Imaging Ca2+ concentration changes at the secretory vesicle surface with a recombinant targeted cameleon. Curr Biol 9:915–918

    Article  PubMed  CAS  Google Scholar 

  23. Dittmer P, Miranda J, Gorski J et al (2009) Genetically encoded sensors to elucidate spatial distribution of cellular zinc. J Biol Chem 284:16289–16297

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Signaling and Cell Cycle Regulation Training Grant (NIH T32 GM08759) to J.G.P. and NIH GM084027 and Alfred P. Sloan Fellowship to A.E.P.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Park, J.G., Palmer, A.E. (2014). Quantitative Measurement of Ca2+ and Zn2+ in Mammalian Cells Using Genetically Encoded Fluorescent Biosensors. In: Zhang, J., Ni, Q., Newman, R. (eds) Fluorescent Protein-Based Biosensors. Methods in Molecular Biology, vol 1071. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-622-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-622-1_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-621-4

  • Online ISBN: 978-1-62703-622-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics