Skip to main content

Gene Silencing in Medicago truncatula Roots Using RNAi

  • Protocol
  • First Online:
Legume Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1069))

Abstract

Medicago truncatula is used widely as a model system for studies of root symbioses, interactions with parasitic nematodes and fungal pathogens, as well as studies of development and secondary metabolism. In Medicago truncatula as well as other legumes, RNA interference (RNAi) coupled with Agrobacterium rhizogenes-mediated root transformation, has been used very successfully for analyses of gene function in roots. One of the major advantages of this approach is the ease and relative speed with which transgenic roots can be generated. There are several methods, both for the generation of the RNAi constructs and the root transformation. Here we provide details of an RNAi and root transformation protocol that has been used successfully in M. truncatula and which can be scaled up to enable the analysis of several hundred constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helliwell CA, Wesley SV, Wielopolska AJ, Waterhouse PM (2002) High-throughput vectors for efficient gene silencing in plants. Funct Plant Biol 29:1217–1225

    Article  CAS  Google Scholar 

  2. Pasquinelli AE, Ruvkun G (2002) Control of developmental timing by microRNAs and their targets. Annu Rev Cell Dev Biol 18:495–513

    Article  PubMed  CAS  Google Scholar 

  3. Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  PubMed  CAS  Google Scholar 

  4. Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  PubMed  CAS  Google Scholar 

  5. Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  PubMed  CAS  Google Scholar 

  6. Gubler F, Hughes T, Waterhouse P, Jacobsen J (2008) Regulation of dormancy in barley by blue light and after-ripening: effects on abscisic acid and gibberellin metabolism. Plant Physiol 147:886–896

    Article  PubMed  CAS  Google Scholar 

  7. Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R (2003) LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302:630–633

    Article  PubMed  CAS  Google Scholar 

  8. Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 104:1720–1725

    Article  PubMed  CAS  Google Scholar 

  9. Subramanian S, Graham MY, Yu O, Graham TL (2005) RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol 137:1345–1353

    Article  PubMed  CAS  Google Scholar 

  10. Dunoyer P, Himber C, Ruiz-Ferrer V, Alioua A, Voinnet O (2007) Intra- and intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing pathways. Nat Genet 39:848–856

    Article  PubMed  CAS  Google Scholar 

  11. Helliwell C, Waterhouse P (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30:289–295

    Article  PubMed  CAS  Google Scholar 

  12. Helliwell CA, Waterhouse PM (2005) Constructs and methods for hairpin RNA-mediated gene silencing in plants. In: Engelke D, Rossi J (eds) Methods in enzymology. Academic, San Diego, pp 24–35

    Google Scholar 

  13. Hartley J, Temple G, Brasch M (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10:1788–1795

    Article  PubMed  CAS  Google Scholar 

  14. Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14:695–700

    Article  PubMed  CAS  Google Scholar 

  15. Collier R, Fuchs B, Walter N, Kevin Lutke W, Taylor CG (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43:449–457

    Article  PubMed  CAS  Google Scholar 

  16. Floss DS, Hause B, Lange PR, Kuster H, Strack D, Walter MH (2008) Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. Plant J 56:86–100

    Article  PubMed  CAS  Google Scholar 

  17. Pumplin N, Mondo SJ, Topp S, Starker CG, Gantt JS, Harrison MJ (2010) Medicago truncatula vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant J 61:482–494

    Article  PubMed  CAS  Google Scholar 

  18. Vieweg MF, Fruhling M, Quandt HJ, Heim U, Baumlein H, Puhler A, Kuster H, Perlick AM (2004) The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants. Mol Plant Microbe Interact 17:62–69

    Article  PubMed  CAS  Google Scholar 

  19. Ivashuta S, Liu J, Liu J, Lohar DP, Haridas S, Bucciarelli B, VandenBosch KA, Vance CP, Harrison MJ, Gantt JS (2005) RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development. Plant Cell 17:2911–2921

    Article  PubMed  CAS  Google Scholar 

  20. Liu J, Blaylock L, Endre G, Cho J, Town CD, VandenBosch K, Harrison MJ (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of the arbuscular mycorrhizal symbiosis. Plant Cell 15: 2106–2123

    Article  PubMed  CAS  Google Scholar 

  21. Quandt HJ, Puhler A, Broer I (1993) Transgenic root nodules of Vicia hirsuta: a fast and efficient system for the study of gene expression in indeterminate-type nodules. MPMI 6:699–706

    Article  Google Scholar 

  22. Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R (2004) RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot 55:983–992

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Armando Bravo and Sergey Ivanov for their reviews and useful comments on the manuscript. Financial support for research was provided by the US National Science Foundation, grants DBI-0421676 and IOS-1127155.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Floss, D.S., Schmitz, A.M., Starker, C.G., Gantt, J.S., Harrison, M.J. (2013). Gene Silencing in Medicago truncatula Roots Using RNAi. In: Rose, R. (eds) Legume Genomics. Methods in Molecular Biology, vol 1069. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-613-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-613-9_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-612-2

  • Online ISBN: 978-1-62703-613-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics