Skip to main content

An Immunoproteomics Approach to Screen the Antigenicity of the Influenza Virus

  • Protocol
  • First Online:
Immunoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1061))

Abstract

The structure and antigenicity of protein antigens of the influenza virus are screened in a single step employing an immunoproteomics approach. Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) coupled to gel electrophoresis is used both to identify viral antigens and screen their antigenicity. Earlier evidence that antigen–antibody complexes can survive on MALDI targets has allowed both the primary structure and antigenicity of viral strains to be rapidly screened with the specific localization of protein epitopes. The approach is anticipated to have a greater role in the future surveillance of the virus and should also aid in the development of immunogenic peptide constructs as alternatives to whole virus for vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicholson KG, Wood JM, Zambon M (2003) Influenza. Lancet 362:1733–1745

    Article  PubMed  CAS  Google Scholar 

  2. Barry JM (2004) The great influenza: the epic story of the deadliest plague in history. Penguin Viking, New York

    Google Scholar 

  3. World Health Organisation Global Influenza Surveillance Network. http://www.who.int/csr/disease/influenza/surveillance/en/index.html

  4. Stephenson I, Nicholson KG (2001) Influenza: vaccination and treatment. Eur Respir J 17:1282–1293

    Article  PubMed  CAS  Google Scholar 

  5. Girard MP, Cherian T, Pervikov Y, Kieny MP (2005) A review of vaccine research and development: human acute respiratory infections. Vaccine 23:5708–5724

    Article  PubMed  CAS  Google Scholar 

  6. Garman E, Laver G (2004) Controlling influenza by inhibiting the virus’s neuraminidase. Curr Drug Targets 5:119–136

    Article  PubMed  CAS  Google Scholar 

  7. Webster RG, Walker EJ (2003) Influenza: the world is teetering on the edge of a pandemic that could kill a large fraction of the human population. Am Sci 91:122

    Article  Google Scholar 

  8. Horimoto T, Kawaoka Y (2005) Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol 3:591–600

    Article  PubMed  CAS  Google Scholar 

  9. Kiselar JG, Downard KM (1999) Direct identification of protein epitopes by mass spectrometry without immobilization of antibody and isolation of antibody–peptide complexes. Anal Chem 71:1792–1799

    Article  PubMed  CAS  Google Scholar 

  10. Kiselar JG, Downard KM (1999) Antigenic surveillance of the influenza virus by mass spectrometry. Biochemistry 38:14185–14191

    Article  PubMed  CAS  Google Scholar 

  11. Morrissey B, Downard KM (2006) A proteomics approach to survey the antigenicity of the influenza virus by mass spectrometry. Proteomics 6:2034–2041

    Article  PubMed  CAS  Google Scholar 

  12. Morrissey B, Streamer M, Downard KM (2007) Antigenic characterisation of H3N2 subtypes of the influenza virus by mass spectrometry. J Virol Methods 145:106–114

    Article  PubMed  CAS  Google Scholar 

  13. Downard KM, Morrissey B (2007) Fingerprinting a killer – surveillance of the influenza virus by mass spectrometry. Analyst 132:611–614

    Article  PubMed  CAS  Google Scholar 

  14. Kiselar JG, Downard KM (2000) Preservation and detection of specific antibody-peptide complexes by matrix-assisted laser desorption ionization mass spectrometry. J Am Soc Mass Spectrom 11:746–750

    Article  PubMed  CAS  Google Scholar 

  15. Zhang WD, Evans DH (1991) Detection and identification of human influenza viruses by the polymerase chain reaction. J Virol Methods 33:165–189

    Article  PubMed  CAS  Google Scholar 

  16. Wright KE, Wilson GA, Novosad D, Dimock C, Tan D, Weber JM (1995) Typing and subtyping of influenza viruses in clinical samples by PCR. J Clin Microbiol 133:1180–1184

    Google Scholar 

  17. Ruben FL, Jackson GG, Gotoff SP (1973) Humoral and cellular response in humans after immunization with influenza vaccine. Infect Immun 7:594–596

    PubMed  CAS  Google Scholar 

  18. Wood JM (2002) Selection of influenza vaccine strains and developing pandemic vaccines. Vaccine 20:B40–B44

    Article  PubMed  Google Scholar 

  19. Kodihalli S, Justewicz DM, Gubareva LV, Webster RG (1995) Selection of a single amino acid substitution in the hemagglutinin molecule by chicken eggs can render influenza A virus (H3) candidate vaccine ineffective. J Virol 69:4888–4897

    PubMed  CAS  Google Scholar 

  20. Julkunen I, Pyhala R, Hovi T (1985) Enzyme immunoassay, complement fixation and hemagglutination inhibition tests in the diagnosis of influenza A and B virus infections. Purified hemagglutinin in subtype-specific diagnosis. J Virol Methods 10:75–84

    Article  PubMed  CAS  Google Scholar 

  21. Li J, Chen S, Evans DH (2001) Typing and subtyping influenza virus using DNA microarrays and multiplex reverse transcriptase PCR. J Clin Microbiol 39:696–704

    Article  PubMed  CAS  Google Scholar 

  22. O’Connell J (ed) (2002) RT-PCR protocols, methods in molecular biology, vol 193. Humana, NJ

    Google Scholar 

  23. Poddar SK (2002) Influenza virus types and subtypes detection by single step single tube multiplex reverse transcription-polymerase chain reaction (RT-PCR) and agarose gel electrophoresis. J Virol Methods 99:63–70

    Article  PubMed  CAS  Google Scholar 

  24. Ho JWK, Morrissey B, Downard KM (2007) A computer algorithm for the identification of protein interactions from the spectra of masses (PRISM). J Am Soc Mass Spectrom 18:563–566

    Article  PubMed  CAS  Google Scholar 

  25. Pappin DJC, Hojrup P, Bleasby AJ (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3:327–332

    Article  PubMed  CAS  Google Scholar 

  26. Mackun K, Downard KM (2003) Strategy for identifying protein–protein interactions of gel-separated proteins and complexes by mass spectrometry. Anal Biochem 318:60–70

    Article  PubMed  CAS  Google Scholar 

  27. Sheshberadaran H, Payne LG (1988) Protein antigen–monoclonal antibody contact sites investigated by limited proteolysis of monoclonal antibody–bound antigen: protein “footprinting”. Proc Natl Acad Sci 85:1–5

    Article  PubMed  CAS  Google Scholar 

  28. Cotter RJ (1997) Time-of-flight mass spectrometry: instrumentation and applications in biological research. American Chemical Society, Washington, DC

    Google Scholar 

  29. Macken C, Lu H, Goodman J, Boykin L (2001) The value of a database in surveillance and vaccine selection. In: Osterhaus ADME, Cox N, Hampson AW (eds) Options for the control of influenza IV. Elsevier Science, Amsterdam, pp 103–106

    Google Scholar 

  30. Downard KM (2004) Chapter 4 – tandem mass spectrometry, in Mass spectrometry – a foundation course. Royal Society of Chemistry, Cambridge

    Google Scholar 

  31. Morrissey B, Downard KM (2008) Kinetics of antigen-antibody interactions employing a MALDI mass spectrometry immunoassay. Anal Chem 80:7720–7726

    Article  PubMed  CAS  Google Scholar 

  32. Schwahn AB, Downard KM (2009) Antigenicity of a type A influenza virus through comparison of hemagglutination inhibition and mass spectrometry immunoassays. J Immunoassay Immunochem 30:245–261

    Article  PubMed  CAS  Google Scholar 

  33. Swaminathan K, Downard KM (2012) Anti-viral inhibitor binding to influenza neuraminidase by MALDI mass spectrometry. Anal Chem 84:3725–3730

    Article  PubMed  CAS  Google Scholar 

  34. Polley JR (1969) Preparation of stable noninfective influenza virus antigens for typing by hemagglutination–inhibition. Can J Microbiol 15:203–207

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the contributions of Bethny Morrissey, Dr. Alexander Schwahn, Dr. Margaret Streamer, and Joshua Ho as indicated by the cited works. The author thanks Robert Shaw and Dr. Ian Barr of the WHO Collaborating Centre for Reference and Research on Influenza and Dr. Elizabeth Pietrzykowski of CSL Limited for the supply of some virus strains and monoclonal antibodies, respectively. Funding for this work was provided by the Australian Research Council (DP0449800 and DP0770619 to the author) and the University of Sydney.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Downard, K.M. (2013). An Immunoproteomics Approach to Screen the Antigenicity of the Influenza Virus. In: Fulton, K., Twine, S. (eds) Immunoproteomics. Methods in Molecular Biology, vol 1061. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-589-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-589-7_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-588-0

  • Online ISBN: 978-1-62703-589-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics