Skip to main content

Whole-Cell MALDI-TOF Mass Spectrometry: A Tool for Immune Cell Analysis and Characterization

  • Protocol
  • First Online:
Immunoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1061))

Abstract

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is widely used in proteomics. It has been recently demonstrated that MALDI-TOF MS can be used to identify and classify numerous bacterial species or subspecies. We applied MALDI-TOF MS directly to intact mammalian cells, and we found that this method is valuable to identify human circulating cells and cells involved in the immune response including macrophages. As macrophages are characterized by a high degree of plasticity in response to their microenvironment, we stimulated human macrophages with cytokines, bacterial products, and a variety of bacteria. We found that MALDI-TOF MS discriminated unstimulated and stimulated macrophages, and also detected multifaceted activation of macrophages. We conclude that whole-cell MALDI-TOF MS is an accurate method to identify various cell types and to detect subtle modifications in cell activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson RP, El-Yazbi AF, Hughes MF, Schriemer DC, Walsh EJ, Walsh MP et al (2009) Identification and functional characterization of protein kinase A-catalyzed phosphorylation of potassium channel Kv1.2 at serine 449. J Biol Chem 284:16562–16574

    Article  PubMed  CAS  Google Scholar 

  2. Li X, Cowles EA, Cowles RS, Gaugler R, Cox-Foster DL (2009) Characterization of immunosuppressive surface coat proteins from Steinernema glaseri that selectively kill blood cells in susceptible hosts. Mol Biochem Parasitol 165:162–169

    Article  PubMed  CAS  Google Scholar 

  3. Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, Iwen P et al (2008) Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J Clin Microbiol 46:1946–1954

    Article  PubMed  CAS  Google Scholar 

  4. Zhang X, Scalf M, Berggren TW, Westphall MS, Smith LM (2006) Identification of mammalian cell lines using MALDI-TOF and LC-ESI-MS/MS mass spectrometry. J Am Soc Mass Spectrom 17:490–499

    Article  PubMed  CAS  Google Scholar 

  5. Brown J, Wallet MA, Krastins B, Sarracino D, Goodenow MM (2010) Proteome bioprofiles distinguish between M1 priming and activation states in human macrophages. J Leukoc Biol 87:655–662

    Article  PubMed  CAS  Google Scholar 

  6. Kraft-Terry SD, Gendelman HE (2011) Proteomic biosignatures for monocyte-macrophage differentiation. Cell Immunol 271:239–255

    Article  PubMed  CAS  Google Scholar 

  7. Rubakhin SS, Churchill JD, Greenough WT, Sweedler JV (2006) Profiling signaling peptides in single mammalian cells using mass spectrometry. Anal Chem 78:7267–7272

    Article  PubMed  CAS  Google Scholar 

  8. Sauer S, Freiwald A, Maier T, Kube M, Reinhardt R, Kostrzewa M et al (2008) Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One 3:e2843

    Article  PubMed  Google Scholar 

  9. Dieckmann R, Helmuth R, Erhard M, Malorny B (2008) Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 74:7767–7778

    Article  PubMed  CAS  Google Scholar 

  10. Lay JO Jr, Holland RD (2000) Rapid identification of bacteria based on spectral patterns using MALDI-TOF MS. Methods Mol Biol 146:461–487

    PubMed  CAS  Google Scholar 

  11. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM et al (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551

    Article  PubMed  CAS  Google Scholar 

  12. Karger A, Bettin B, Lenk M, Mettenleiter TC (2010) Rapid characterisation of cell cultures by matrix-assisted laser desorption/ionisation mass spectrometric typing. J Virol Methods 164:116–121

    Article  PubMed  CAS  Google Scholar 

  13. Ouedraogo R, Flaudrops C, Ben Amara A, Capo C, Raoult D, Mege JL (2010) Global analysis of circulating immune cells by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS One 5:e13691

    Article  PubMed  Google Scholar 

  14. Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181:3733–3739

    PubMed  CAS  Google Scholar 

  15. Ouedraogo R, Daumas A, Ghigo E, Capo C, Mege JL, Textoris J (2012) Whole-cell MALDI-TOF MS: a new tool to assess the multifaceted activation of macrophages. J Proteomics 75:5523–5532

    Article  PubMed  CAS  Google Scholar 

  16. Delaby A, Gorvel L, Espinosa L, Lépolard C, Raoult D, Ghigo E et al (2012) Defective monocyte dynamics in Q fever granuloma deficiency. J Infect Dis 205:1086–1094

    Article  PubMed  Google Scholar 

  17. Mba Medie F, Ben Salah I, Henrissat B, Raoult D, Drancourt M (2011) Mycobacterium tuberculosis complex mycobacteria as amoeba-resistant organisms. PLoS One 6:e20499

    Article  PubMed  CAS  Google Scholar 

  18. Meghari S, Bechah Y, Capo C, Lepidi H, Raoult D, Murray PJ et al (2008) Persistent Coxiella burnetii infection in mice overexpressing IL-10: an efficient model for chronic Q fever pathogenesis. PLoS Pathog 4:e23

    Article  PubMed  Google Scholar 

  19. Tantibhedhyangkul W, Prachason T, Waywa D, El Filali A, Ghigo E, Thongnoppakhun W et al (2011) Orientia tsutsugamushi stimulates an original gene expression program in monocytes: relationship with gene expression in patients with scrub typhus. PLoS Negl Trop Dis 5:e1028

    Article  PubMed  CAS  Google Scholar 

  20. Ryan CG, Clayton E, Griffin WL, Sie SH, Cousens DR (1988) SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nucl Inst Meth Phys Res B 34:396–402

    Article  Google Scholar 

Download references

Acknowledgments

We thank Nicolas Armstrong, Carine Couderc, Philippe Decloquement, and Christophe Flaudrops for their technical assistance.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ouedraogo, R., Textoris, J., Daumas, A., Capo, C., Mege, JL. (2013). Whole-Cell MALDI-TOF Mass Spectrometry: A Tool for Immune Cell Analysis and Characterization. In: Fulton, K., Twine, S. (eds) Immunoproteomics. Methods in Molecular Biology, vol 1061. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-589-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-589-7_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-588-0

  • Online ISBN: 978-1-62703-589-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics