Skip to main content

Phosphatase High-Throughput Screening Assay Design and Selection

  • Protocol
  • First Online:
Phosphatase Modulators

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1053))

Abstract

Phosphatases are a heterogeneous group of enzymes catalyzing dephosphorylation of diverse substrates ranging from small organic molecules to large phosphorylated multiprotein complexes. A wide variety of biochemical approaches for measuring phosphatase activity exists. Spectrophotometric methods utilizing artificial chromogenic, fluorogenic, and luminogenic substrates and taking advantage of the optical properties of dephosphorylated products are broadly used by research community. Another major assay type is based on quantitation of the second product of any phosphatase reactions, inorganic phosphate, using a variety of phosphate detection methods. Although, in theory, compatible with any phosphatase substrate, these assays often are unable to provide acceptable high-throughput screening adaptations of native phosphatase reactions. Conversely, phosphatase assays with artificial substrates frequently are incapable to mirror the intricacies of substrate binding and catalysis of the native reaction and, as a result, unable to deliver biologically relevant phosphatase modulators. Utilization of comprehensive phosphatase assay panels, employing honed biochemical assays and cell-based model systems, in conjunction with novel approaches for screening phosphatases may aid in identification of potent, selective, and biologically active phosphatase modulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Simeonov A, Jadhav A, Thomas CJ et al (2008) Fluorescence spectroscopic profiling of compound libraries. J Med Chem 51:2363–2371

    Article  PubMed  CAS  Google Scholar 

  2. Sergienko E (2012) Chapter 12. Basics of HTS assay design and optimization. Chemical genomics. Cambridge University Press, New York, pp 159–172

    Google Scholar 

  3. Bell RD, Doisy EA (1920) Rapid colorimetric methods for the determination of phosphorus in urine and blood. J Biol Chem 44:55–67

    CAS  Google Scholar 

  4. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  5. Hess HH, Derr JE (1975) Assay of inorganic and organic phosphorus in the 0.1-5 nanomole range. Anal Biochem 63:607–613

    Article  PubMed  CAS  Google Scholar 

  6. Sergienko EA, Kharitonenkov AI, Bulargina TV et al (1992) D-glyceraldehyde-3-phosphate dehydrogenase purified from rabbit muscle contains phosphotyrosine. FEBS Lett 304:21–23

    Article  PubMed  CAS  Google Scholar 

  7. Sergienko EA, Ermakova AA, Muronets VI et al (1993) Phosphorylation of glyceraldehyde-3-phosphate dehydrogenase. Biokhimiia 58:636–647

    PubMed  CAS  Google Scholar 

  8. Fisher DK, Higgins TJ (1994) A sensitive, high-volume, colorimetric assay for protein phosphatases. Pharm Res 11:759–763

    Article  PubMed  CAS  Google Scholar 

  9. Tautz L, Mustelin T (2007) Strategies for developing protein tyrosine phosphatase inhibitors. Methods 42:250–260

    Article  PubMed  CAS  Google Scholar 

  10. Narisawa S, Harmey D, Yadav MC et al (2007) Novel inhibitors of alkaline phosphatase suppress vascular smooth muscle cell calcification. J Bone Miner Res 22:1700–1710

    Article  PubMed  CAS  Google Scholar 

  11. Plimmer RH (1941) Esters of phosphoric acid: phosphoryl hydroxyamino-acids. Biochem J 35:461–469

    PubMed  CAS  Google Scholar 

  12. Low HH, Lowe J (2006) A bacterial dynamin-like protein. Nature 444:766–769

    Article  PubMed  CAS  Google Scholar 

  13. Freschauf GK, Karimi-Busheri F, Ulaczyk-Lesanko A et al (2009) Identification of a small molecule inhibitor of the human DNA repair enzyme polynucleotide kinase/phosphatase. Cancer Res 69:7739–7746

    Article  PubMed  CAS  Google Scholar 

  14. Webb MR (1992) A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc Natl Acad Sci U S A 89:4884–4887

    Article  PubMed  CAS  Google Scholar 

  15. Sergienko EA, Srivastava DK (1994) A continuous spectrophotometric method for the determination of glycogen phosphorylase-catalyzed reaction in the direction of glycogen synthesis. Anal Biochem 221:348–355

    Article  PubMed  CAS  Google Scholar 

  16. Cheng Q, Wang ZX, Killilea SD (1995) A continuous spectrophotometric assay for protein phosphatases. Anal Biochem 226:68–73

    Article  PubMed  CAS  Google Scholar 

  17. Huwel S, Haalck L, Conrath N et al (1997) Maltose phosphorylase from Lactobacillus brevis: purification, characterization, and application in a biosensor for ortho-phosphate. Enzyme Microb Technol 21:413–420

    Article  PubMed  CAS  Google Scholar 

  18. Zhou M, Diwu Z, Panchuk-Voloshina N et al (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253:162–168

    Article  CAS  Google Scholar 

  19. Brune M, Hunter JL, Corrie JE et al (1994) Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. Biochemistry 33:8262–8271

    Article  PubMed  CAS  Google Scholar 

  20. Tietz NW, Burtis CA, Duncan P et al (1983) A reference method for measurement of alkaline phosphatase activity in human serum. Clin Chem 29:751–761

    CAS  Google Scholar 

  21. Sergienko E, Su Y, Chan X et al (2009) Identification and characterization of novel tissue-nonspecific alkaline phosphatase inhibitors with diverse modes of action. J Biomol Screen 14:824–837

    Article  PubMed  CAS  Google Scholar 

  22. Sergienko E, Xu J, Liu WH et al (2012) Inhibition of hematopoietic protein tyrosine phosphatase augments and prolongs ERK1/2 and p38 activation. ACS Chem Biol 7:367–377

    Article  CAS  Google Scholar 

  23. Sparkers MC, Crist ML, Sparkes RS (1975) High sensitivity of phenolphthalein monophosphate in detecting acid phosphatase isoenzymes. Anal Biochem 64:316–318

    Article  PubMed  CAS  Google Scholar 

  24. Ewen LM, Spitzer RW (1976) Improved determination of prostatic acid phosphatase (sodium thymolphthalein monophosphate substrate). Clin Chem 22:627–632

    CAS  Google Scholar 

  25. Babson AL, Greeley SJ, Coleman CM et al (1966) Phenolphthalein monophosphate as a substrate for serum alkaline phosphatase. Clin Chem 12:482–490

    PubMed  CAS  Google Scholar 

  26. Coleman CM (1966) The synthesis of thymolphthalein monophosphate, a new substrate for alkaline phosphatase. Clin Chim Acta 13:401–403

    Article  PubMed  CAS  Google Scholar 

  27. Gee KR, Sun WC, Bhalgat MK et al (1999) Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and beta-galactosidases. Anal Biochem 273:41–48

    Article  PubMed  CAS  Google Scholar 

  28. Hill HD, Summer GK, Waters MD (1968) An automated fluorometric assay for alkaline phosphatase using 3-O-methylfluorescein phosphate. Anal Biochem 24:9–17

    Article  PubMed  CAS  Google Scholar 

  29. Wang WQ, Bembenek J, Gee KR et al (2004) Kinetic and mechanistic studies of a cell cycle protein phosphatase Cdc14. J Biol Chem 279:30459–30468

    Article  PubMed  CAS  Google Scholar 

  30. McCain DF, Catrina IE, Hengge AC et al (2002) The catalytic mechanism of Cdc25A phosphatase. J Biol Chem 277:11190–11200

    Article  CAS  Google Scholar 

  31. Sergienko EA, Millan JL (2010) High-throughput screening of tissue-nonspecific alkaline phosphatase for identification of effectors with diverse modes of action. Nat Protoc 5:1431–1439

    Article  PubMed  CAS  Google Scholar 

  32. Mountfort DO, Kennedy G, Garthwaite I et al (1999) Evaluation of the fluorometric protein phosphatase inhibition assay in the determination of okadaic acid in mussels. Toxicon 37:909–922

    Article  PubMed  CAS  Google Scholar 

  33. Sparks JW, Brautigan DL (1986) Molecular basis for substrate specificity of protein kinases and phosphatases. Int J Biochem 18:497–504

    Article  PubMed  CAS  Google Scholar 

  34. Huang Z, Zhou B, Zhang ZY (2004) Molecular determinants of substrate recognition in hematopoietic protein-tyrosine phosphatase. J Biol Chem 279:52150–52159

    Article  PubMed  CAS  Google Scholar 

  35. Zhou B, Zhang J, Liu S et al (2006) Mapping ERK2-MKP3 binding interfaces by hydrogen/deuterium exchange mass spectrometry. J Biol Chem 281:38834–38844

    Article  PubMed  CAS  Google Scholar 

  36. Robers MB, Horton RA, Bercher MR et al (2008) High-throughput cellular assays for regulated posttranslational modifications. Anal Biochem 372:189–197

    Article  PubMed  CAS  Google Scholar 

  37. Mitra S, Barrios AM (2005) Highly sensitive peptide-based probes for protein tyrosine phosphatase activity utilizing a fluorogenic mimic of phosphotyrosine. Bioorg Med Chem Lett 15:5142–5145

    Article  PubMed  CAS  Google Scholar 

  38. Xue F, Seto CT (2010) Fluorogenic peptide substrates for serine and threonine phosphatases. Org Lett 12:1936–1939

    Article  PubMed  CAS  Google Scholar 

  39. Mustelin T, Tautz L, Page R (2005) Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site. J Mol Biol 354:150–163

    Article  PubMed  CAS  Google Scholar 

  40. den Hertog J, Groen A, van der Wijk T (2005) Redox regulation of protein-tyrosine phosphatases. Arch Biochem Biophys 434:11–15

    Article  Google Scholar 

  41. Heneberg P, Draber P (2005) Regulation of cys-based protein tyrosine phosphatases via reactive oxygen and nitrogen species in mast cells and basophils. Curr Med Chem 12:1859–1871

    Article  PubMed  CAS  Google Scholar 

  42. Narisawa S, Wennberg C, Millan JL (2001) Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization. J Pathol 193:125–133

    Article  PubMed  CAS  Google Scholar 

  43. Hessle L, Johnson KA, Anderson HC et al (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci U S A 99:9445–9449

    Article  PubMed  CAS  Google Scholar 

  44. Millán JL (2006) Mammalian alkaline phosphatases: from biology to applications in medicine and biotechnology. Wiley-VCH Verlag GmbH, Weinheim, Germany

    Book  Google Scholar 

  45. Lomashvili KA, Garg P, Narisawa S et al (2008) Upregulation of alkaline phosphatase and pyrophosphate hydrolysis: potential mechanism for uremic vascular calcification. Kidney Int 73:1024–1030

    Article  PubMed  CAS  Google Scholar 

  46. Villa-Bellosta R, Wang X, Millan JL et al (2011) Extracellular pyrophosphate metabolism and calcification in vascular smooth muscle. Am J Physiol Heart Circ Physiol 301:H61–H68

    Article  PubMed  CAS  Google Scholar 

  47. Chia JY, Gajewski JE, Xiao Y et al (2010) Unique biochemical properties of the protein tyrosine phosphatase activity of PTEN-demonstration of different active site structural requirements for phosphopeptide and phospholipid phosphatase activities of PTEN. Biochim Biophys Acta 1804:1785–1795

    Article  PubMed  CAS  Google Scholar 

  48. Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221

    Article  PubMed  CAS  Google Scholar 

  49. Du Y, Xu J, Fu H et al (2012) Chapter 18. Label-free biosensor technologies in small molecule modulator discovery. Chemical Genomics. Cambridge University Press, New York, pp 245–258

    Google Scholar 

  50. Sergienko EA, Heynen-Genel S (2013) Experimental approaches for rapid identification, profiling and characterization of specific biological effects of DOS compounds. Diversity-oriented synthesis: basics and applications in organic synthesis, drug discovery, and chemical biology. Wiley-Blackwell, New Jersey, In Press

    Google Scholar 

  51. Jacoby E, Mozzarelli A (2009) Chemogenomic strategies to expand the bioactive chemical space. Curr Med Chem 16:4374–4381

    Article  PubMed  CAS  Google Scholar 

  52. Nielsen TE, Schreiber SL (2008) Towards the optimal screening collection: a synthesis strategy. Angew Chem Int Ed Engl 47:48–56

    Article  PubMed  CAS  Google Scholar 

  53. Chen Y, Shoichet BK (2009) Molecular docking and ligand specificity in fragment-based inhibitor discovery. Nat Chem Biol 5:358–364

    Article  PubMed  CAS  Google Scholar 

  54. Johnson S, Barile E, Farina B et al (2011) Targeting metalloproteins by fragment-based lead discovery. Chem Biol Drug Des 78:211–223

    Article  PubMed  CAS  Google Scholar 

  55. Friberg A, Vigil D, Zhao B et al (2013) Discovery of potent myeloid cell leukemia 1 (mcl-1) inhibitors using fragment-based methods and structure-based design. J Med Chem 56:15–30

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sergienko, E.A. (2013). Phosphatase High-Throughput Screening Assay Design and Selection. In: Millán, J. (eds) Phosphatase Modulators. Methods in Molecular Biology, vol 1053. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-562-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-562-0_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-561-3

  • Online ISBN: 978-1-62703-562-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics