Skip to main content

Aging Studies in Drosophila Melanogaster

  • Protocol
  • First Online:
Biological Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1048))

Abstract

Drosophila is a genetically tractable system ideal for investigating the mechanisms of aging and developing interventions for promoting healthy aging. Here we describe methods commonly used in Drosophila aging research. These include basic approaches for preparation of diets and measurements of lifespan, food intake, and reproductive output. We also describe some commonly used assays to measure changes in physiological and behavioral functions of Drosophila in aging, such as stress resistance and locomotor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Jason Yolitz and Cecilia Wang have contributed equally to this project.

References

  1. Partridge L, Tower J (2008) Yeast, a feast: the fruit fly Drosophila as a model organism for research into aging. In: Guarente L, Partridge L, Wallace DC (eds) Molecular biology of aging. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 267–308

    Google Scholar 

  2. Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  3. Myers EW, Sutton GG, Delcher AL et al (2000) A whole-genome assembly of Drosophila. Science 287:2196–2204

    Article  PubMed  CAS  Google Scholar 

  4. Reiter LT, Potocki L, Chien S et al (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11:1114–1125

    Article  PubMed  CAS  Google Scholar 

  5. Finch CE, Ruvkun G (2001) The genetics of aging. Annu Rev Genomics Hum Genet 2:435–462

    Article  PubMed  CAS  Google Scholar 

  6. Swindell WR, Bouzat JL (2006) Inbreeding depression and male survivorship in Drosophila: implications for senescence theory. Genetics 172:317–327

    Article  PubMed  CAS  Google Scholar 

  7. Fry JD, Heinsohn SL, Mackay TF (1998) Heterosis for viability, fecundity, and male fertility in Drosophila melanogaster: comparison of mutational and standing variation. Genetics 148:1171–1188

    PubMed  CAS  Google Scholar 

  8. McGuire SE, Mao Z, Davis RL (2004) Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci STKE 2004:pl6

    PubMed  Google Scholar 

  9. Tower J (2000) Transgenic methods for increasing Drosophila life span. Mech Ageing Dev 118:1–14

    Article  PubMed  CAS  Google Scholar 

  10. Lin YJ, Seroude L, Benzer S (1998) Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282:943–946

    Article  PubMed  CAS  Google Scholar 

  11. Piper MD, Partridge L, Raubenheimer D et al (2011) Dietary restriction and aging: a unifying perspective. Cell Metab 14:154–160

    Article  PubMed  CAS  Google Scholar 

  12. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span – from yeast to humans. Science 328:321–326

    Article  PubMed  CAS  Google Scholar 

  13. Lee KP, Simpson SJ, Clissold FJ et al (2008) Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proc Natl Acad Sci U S A 105:2498–2503

    Article  PubMed  CAS  Google Scholar 

  14. Skorupa DA, Dervisefendic A, Zwiener J et al (2008) Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 7:478–490

    Article  PubMed  CAS  Google Scholar 

  15. Carvalho GB, Kapahi P, Benzer S (2005) Compensatory ingestion upon dietary restriction in Drosophila melanogaster. Nat Methods 2:813–815

    Article  PubMed  CAS  Google Scholar 

  16. Edgecomb RS, Harth CE, Schneiderman AM (1994) Regulation of feeding-behavior in adult Drosophila melanogaster varies with feeding regime and nutritional state. J Exp Biol 197:215–235

    PubMed  CAS  Google Scholar 

  17. Wong R, Piper MD, Wertheim B et al (2009) Quantification of food intake in Drosophila. PLoS One 4:e6063

    Article  PubMed  Google Scholar 

  18. Ja WW, Carvalho GB, Mak EM et al (2007) Prandiology of Drosophila and the CAFE assay. Proc Natl Acad Sci U S A 104:8253–8256

    Article  PubMed  CAS  Google Scholar 

  19. Haigis MC, Yankner BA (2010) The aging stress response. Mol Cell 40:333–344

    Article  PubMed  CAS  Google Scholar 

  20. Kirkwood TBL, Austad SN (2000) Why do we age? Nature 408:233–238

    Article  PubMed  CAS  Google Scholar 

  21. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  PubMed  CAS  Google Scholar 

  22. Arking R, Buck S, Berrios A et al (1991) Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain of Drosophila. Dev Genet 12:362–370

    Article  PubMed  CAS  Google Scholar 

  23. Huey RB, Suess J, Hamilton H et al (2004) Starvation resistance in Drosophila melanogaster: testing for a possible ‘cannibalism’ bias. Funct Ecol 18:952–954

    Article  Google Scholar 

  24. Salmon AB, Richardson A, Perez VI (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 48:642–655

    Article  PubMed  CAS  Google Scholar 

  25. Force AG, Staples T, Soliman S et al (1995) Comparative biochemical and stress analysis of genetically selected Drosophila strains with different longevities. Dev Genet 17:340–351

    Article  PubMed  CAS  Google Scholar 

  26. Hoffmann AA, Harshman LG (1999) Desiccation and starvation resistance in Drosophila: patterns of variation at the species, population and intrapopulation levels. Heredity (Edinburgh) 83(Pt 6):637–643

    Article  Google Scholar 

  27. Kapahi P, Zid BM, Harper T et al (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway (May 25, pg 885, 2004). Curr Biol 14:1789

    Article  CAS  Google Scholar 

  28. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  PubMed  CAS  Google Scholar 

  29. Flatt T, Promislow DE (2007) Physiology. Still pondering an age-old question. Science 318:1255–1256

    Article  PubMed  CAS  Google Scholar 

  30. De Loof A (2011) Longevity and aging in insects: is reproduction costly; cheap; beneficial or irrelevant? A critical evaluation of the “trade-off” concept. J Insect Physiol 57:1–11

    Article  PubMed  Google Scholar 

  31. Flatt T (2011) Survival costs of reproduction in Drosophila. Exp Gerontol 46:369–375

    Article  PubMed  Google Scholar 

  32. Tatar M (2010) Reproductive aging in invertebrate genetic models. Ann N Y Acad Sci 1204:149–155

    Article  PubMed  CAS  Google Scholar 

  33. Zwaan B, Bijlsma R, Hoekstra RE (1995) Direct selection on life-span in Drosophila melanogaster. Evolution 49:649–659

    Article  Google Scholar 

  34. Hutchinson EW, Shaw AJ, Rose MR (1991) Quantitative genetics of postponed aging in Drosophila melanogaster. 2. Analysis of selected lines. Genetics 127:729–737

    PubMed  CAS  Google Scholar 

  35. Partridge L, Prowse N, Pignatelli P (1999) Another set of responses and correlated responses to selection on age at reproduction in Drosophila melanogaster. Proc R Soc Lond B Biol Sci 266:255–261

    Article  CAS  Google Scholar 

  36. Barnes AI, Wigby S, Boone JM et al (2008) Feeding, fecundity and lifespan in female Drosophila melanogaster. Proc Biol Sci 275:1675–1683

    Article  PubMed  Google Scholar 

  37. Sgro CM, Partridge L (1999) A delayed wave of death from reproduction in Drosophila. Science 286:2521–2524

    Article  PubMed  CAS  Google Scholar 

  38. Iliadi KG, Boulianne GL (2010) Age-related behavioral changes in Drosophila. Ann N Y Acad Sci 1197:9–18

    Article  PubMed  Google Scholar 

  39. Shively CA, Willard SL, Register TC et al (2011) Aging and physical mobility in group-housed Old World monkeys. Age (Dordrecht) 69(9 Suppl):219S–220S

    Google Scholar 

  40. Francois M, Morice AH, Blouin J et al (2011) Age-related decline in sensory processing for locomotion and interception. Neuroscience 172:366–378

    Article  PubMed  CAS  Google Scholar 

  41. Gargano JW, Martin I, Bhandari P et al (2005) Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Exp Gerontol 40:386–395

    Article  PubMed  Google Scholar 

  42. Nichols CD, Becnel J, Pandey UB (2012) Methods to assay Drosophila behavior. J Vis Exp 61:e3795

    Google Scholar 

  43. Pfeiffenberger C, Lear BC, Keegan KP et al (2010) Locomotor activity level monitoring using the Drosophila activity monitoring (DAM) system. Cold Spring Harb Protoc 2010:pdb prot5518

    PubMed  Google Scholar 

  44. Allada R, Chung BY (2010) Circadian organization of behavior and physiology in Drosophila. Annu Rev Physiol 72:605–624

    Article  PubMed  CAS  Google Scholar 

  45. Pfeiffenberger C, Lear BC, Keegan KP et al (2010) Processing sleep data created with the Drosophila activity monitoring (DAM) system. Cold Spring Harb Protoc 2010:pdb prot5520

    PubMed  Google Scholar 

  46. Pfeiffenberger C, Lear BC, Keegan KP et al (2010) Processing circadian data collected from the Drosophila activity monitoring (DAM) system. Cold Spring Harb Protoc 2010:pdb prot5519

    PubMed  Google Scholar 

  47. Koh K, Evans JM, Hendricks JC et al (2006) A Drosophila model for age-associated changes in sleep:wake cycles. Proc Natl Acad Sci U S A 103:13843–13847

    Article  PubMed  CAS  Google Scholar 

  48. Branson K, Robie AA, Bender J et al (2009) High-throughput ethomics in large groups of Drosophila. Nat Methods 6:451–457

    Article  PubMed  CAS  Google Scholar 

  49. Grover D, Yang J, Ford D et al (2009) Simultaneous tracking of movement and gene expression in multiple Drosophila melanogaster flies using GFP and DsRED fluorescent reporter transgenes. BMC Res Notes 2:58

    Article  PubMed  Google Scholar 

  50. Zou S, Liedo P, Altamirano-Robles L et al (2011) Recording lifetime behavior and movement in an invertebrate model. PLoS One 6:e18151

    Article  PubMed  CAS  Google Scholar 

  51. Ardekani R, Huang YM, Sancheti P et al (2012) Using GFP video to track 3D movement and conditional gene expression in free-moving flies. PLoS One 7:e40506

    Article  PubMed  CAS  Google Scholar 

  52. Frazier AE, Thorburn DR (2012) Biochemical analyses of the electron transport chain complexes by spectrophotometry. Methods Mol Biol 837:49–62

    Article  PubMed  CAS  Google Scholar 

  53. Lakovaara S (1969) Malt as a culture medium for Drosophila species. Dros Inform Ser 44:128

    Google Scholar 

  54. Lewis EB (1960) A new standard food medium. Dros Inform Ser 34:117–118

    Google Scholar 

  55. Bass TM, Grandison RC, Wong R et al (2007) Optimization of dietary restriction protocols in Drosophila. J Gerontol A Biol Sci Med Sci 62:1071–1081

    Article  PubMed  Google Scholar 

  56. Sun X, Seeberger J, Alberico T et al (2010) Acai palm fruit (Euterpe oleracea Mart.) pulp improves survival of flies on a high fat diet. Exp Gerontol 45:243–251

    Article  PubMed  CAS  Google Scholar 

  57. Sun X, Komatsu T, Lim J et al (2012) Nutrient-dependent requirement for SOD1 in lifespan extension by protein restriction in Drosophila melanogaster. Aging Cell 11:783–793

    Google Scholar 

  58. Arking R, Buck S, Berrios A et al (1991) Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain of Drosophila. Dev Genet 12:362–370

    Article  PubMed  CAS  Google Scholar 

  59. Boyd O, Weng P, Sun X et al (2011) Nectarine promotes longevity in Drosophila melanogaster. Free Radic Biol Med 50:1669–1678

    Article  PubMed  CAS  Google Scholar 

  60. Ja WW, Carvalho GB, Zid BM et al (2009) Water- and nutrient-dependent effects of dietary restriction on Drosophila lifespan. Proc Natl Acad Sci U S A 106:18633–18637

    Article  PubMed  CAS  Google Scholar 

  61. Pletcher SD, Khazaeli AA, Curtsinger JW (2000) Why do life spans differ? Partitioning mean longevity differences in terms of age-specific mortality parameters. J Gerontol A Biol Sci Med Sci 55:B381–B389

    Article  PubMed  CAS  Google Scholar 

  62. Mair W, Piper MDW, Partridge L (2005) Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 3:1305–1311

    Article  CAS  Google Scholar 

  63. Bayne AC, Mockett RJ, Orr WC et al (2005) Enhanced catabolism of mitochondrial superoxide/hydrogen peroxide and aging in transgenic Drosophila. Biochem J 391:277–284

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank three anonymous reviewers for their constructive comments on the manuscript. This work was supported by the Intramural Research Program at the National Institute on Aging, NIH, to S.Z.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Sun, Y., Yolitz, J., Wang, C., Spangler, E., Zhan, M., Zou, S. (2013). Aging Studies in Drosophila Melanogaster. In: Tollefsbol, T. (eds) Biological Aging. Methods in Molecular Biology, vol 1048. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-556-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-556-9_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-555-2

  • Online ISBN: 978-1-62703-556-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics