Skip to main content

In Vivo and In Vitro Properties of Ovarian Cancer Cells

  • Protocol
  • First Online:
Ovarian Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1049))

  • 5112 Accesses

Abstract

Specific biological properties of ovarian cancer cells can be modeled and studied using in vitro experiments. Any experimental setting can closely reflect some aspects of the native conditions; however, parameters that differ from in vivo aspects must be considered. Familiarity with existing and well-established, as well as new, cell culture techniques provides a basis for correct experimental design and production of reliable scientific results. This chapter presents a short comparative review of the techniques used for cell culture establishment and maintenance of ovarian cancer cells, as well as laboratory methods used to characterize malignant features of these cells, including the epithelial–mesechymal transition, cell motility and invasiveness, resistance to detachment-induced apoptosis, and stem cell content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lancaster JM, Dressman HK, Clarke JP, Sayer RA, Martino MA et al (2006) Identification of genes associated with ovarian cancer metastasis using microarray expression analysis. Int J Gynecol Cancer 16:1733–1745

    Article  PubMed  CAS  Google Scholar 

  2. Bignotti E, Tassi RA, Calza S, Ravaggi A, Bandiera E et al (2007) Gene expression profile of ovarian serous papillary carcinomas: identification of metastasis-associated genes. Am J Obstet Gynecol 196:245.e1–245.e11

    Article  Google Scholar 

  3. Davidson B (2007) Anatomic site-related expression of cancer-associated molecules in ovarian carcinoma. Curr Cancer Drug Targets 7:109–120

    Article  PubMed  CAS  Google Scholar 

  4. Gillet JP, Calcagno AM, Varma S, Marino M, Green LJ et al (2011) Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci USA 108: 18708–18713

    Article  PubMed  CAS  Google Scholar 

  5. Haglund C, Aleskog A, Nygren P, Gullbo J, Hoglund M et al (2012) In vitro evaluation of clinical activity and toxicity of anticancer drugs using tumor cells from patients and cells representing normal tissues. Cancer Chemother Pharmacol 69:697–707

    Article  PubMed  CAS  Google Scholar 

  6. Zachary C, Dobbin AAK, Angela Ziebarth, Monjri Shah, Adam D Steg, Ronald David Alvarez, Michael G Conner, Charles N Landen; University of Alabama at Birmingham, Birmingham, AL (2012) Use of an optimized primary ovarian cancer xenograft model to mimic patient tumor biology and heterogeneity. 2012 ASCO Annual Meeting (Poster Discussion Session) Abstract 5036

    Google Scholar 

  7. Lee CH, Xue H, Sutcliffe M, Gout PW, Huntsman DG et al (2005) Establishment of subrenal capsule xenografts of primary human ovarian tumors in SCID mice: potential models. Gynecol Oncol 96:48–55

    Article  PubMed  Google Scholar 

  8. Bankert RB, Balu-Iyer SV, Odunsi K, Shultz LD, Kelleher RJ Jr et al (2011) Humanized mouse model of ovarian cancer recapitulates patient solid tumor progression, ascites formation, and metastasis. PLoS One 6:e24420

    Article  PubMed  CAS  Google Scholar 

  9. Bignotti E, Tassi RA, Calza S, Ravaggi A, Romani C et al (2006) Differential gene expression profiles between tumor biopsies and short-term primary cultures of ovarian serous carcinomas: identification of novel molecular biomarkers for early diagnosis and therapy. Gynecol Oncol 103:405–416

    Article  PubMed  CAS  Google Scholar 

  10. Provencher DM, Finstad CL, Saigo PE, Rubin SC, Hoskins WJ et al (1993) Comparison of antigen expression on fresh and cultured ascites cells and on solid tumors of patients with epithelial ovarian cancer. Gynecol Oncol 50:78–83

    Article  PubMed  CAS  Google Scholar 

  11. Alison MR, Lin WR, Lim SM, Nicholson LJ (2012) Cancer stem cells: in the line of fire. Cancer Treat Rev 38:589–598

    Article  PubMed  CAS  Google Scholar 

  12. Pan Y, Huang X (2008) Epithelial ovarian cancer stem cells-a review. Int J Clin Exp Med 1:260–266

    PubMed  CAS  Google Scholar 

  13. Zhang S, Balch C, Chan MW, Lai HC, Matei D et al (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68:4311–4320

    Article  PubMed  CAS  Google Scholar 

  14. Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE et al (2009) Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle 8:158–166

    Article  PubMed  CAS  Google Scholar 

  15. Guadamillas MC, Cerezo A, Del Pozo MA (2011) Overcoming anoikis–pathways to anchorage-independent growth in cancer. J Cell Sci 124:3189–3197

    Article  PubMed  CAS  Google Scholar 

  16. Klausen C, Leung PC, Auersperg N (2009) Cell motility and spreading are suppressed by HOXA4 in ovarian cancer cells: possible involvement of beta1 integrin. Mol Cancer Res 7:1425–1437

    Article  PubMed  CAS  Google Scholar 

  17. Frankel A, Buckman R, Kerbel RS (1997) Abrogation of taxol-induced G2-M arrest and apoptosis in human ovarian cancer cells grown as multicellular tumor spheroids. Cancer Res 57:2388–2393

    PubMed  CAS  Google Scholar 

  18. Tang MK, Zhou HY, Yam JW, Wong AS (2010) c-Met overexpression contributes to the acquired apoptotic resistance of nonadherent ovarian cancer cells through a cross talk mediated by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Neoplasia 12:128–138

    PubMed  CAS  Google Scholar 

  19. Sher I, Adham SA, Petrik J, Coomber BL (2009) Autocrine VEGF-A/KDR loop protects epithelial ovarian carcinoma cells from anoikis. Int J Cancer 124:553–561

    Article  PubMed  CAS  Google Scholar 

  20. Yu X, Liu L, Cai B, He Y, Wan X (2008) Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci 99:543–552

    Article  PubMed  CAS  Google Scholar 

  21. Brigulova K, Cervinka M, Tosner J, Sedlakova I (2010) Chemoresistance testing of human ovarian cancer cells and its in vitro model. Toxicol In Vitro 24:2108–2115

    Article  PubMed  CAS  Google Scholar 

  22. Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333

    Article  PubMed  CAS  Google Scholar 

  23. Sodek KL, Murphy KJ, Brown TJ, Ringuette MJ (2012) Cell-cell and cell-matrix dynamics in intraperitoneal cancer metastasis. Cancer Metastasis Rev 31:397–414

    Article  PubMed  CAS  Google Scholar 

  24. Watanabe T, Hashimoto T, Sugino T, Soeda S, Nishiyama H et al (2012) Production of IL1-beta by ovarian cancer cells induces mesothelial cell beta1-integrin expression facilitating peritoneal dissemination. J Ovarian Res 5:7

    Article  PubMed  CAS  Google Scholar 

  25. Barbolina MV, Adley BP, Kelly DL, Shepard J, Fought AJ et al (2009) Downregulation of connective tissue growth factor by three-dimensional matrix enhances ovarian carcinoma cell invasion. Int J Cancer 125:816–825

    Article  PubMed  CAS  Google Scholar 

  26. Barbolina MV, Adley BP, Kelly DL, Fought AJ, Scholtens DM et al (2008) Motility-related actinin alpha-4 is associated with advanced and metastatic ovarian carcinoma. Lab Invest 88:602–614

    Article  PubMed  CAS  Google Scholar 

  27. Kenny HA, Dogan S, Zillhardt M, Mitra A, Yamada SD, Krausz T, Lengyel E (2009) Organotypic models of metastasis: a three-dimensional culture mimicking the human peritoneum and omentum for the study of the early steps of ovarian cancer metastasis. Cancer Treat Res 149:335–351

    Article  PubMed  CAS  Google Scholar 

  28. Khan SM, Funk HM, Thiolloy S, Lotan TL, Hickson J et al (2010) In vitro metastatic colonization of human ovarian cancer cells to the omentum. Clin Exp Metastasis 27:185–196

    Article  PubMed  Google Scholar 

  29. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  PubMed  CAS  Google Scholar 

  30. Davidson B, Trope CG, Reich R (2012) Epithelial-mesenchymal transition in ovarian carcinoma. Front Oncol 2:33

    Article  PubMed  Google Scholar 

  31. Nakayama K, Nakayama N, Katagiri H, Miyazaki K (2012) Mechanisms of ovarian cancer metastasis: biochemical pathways. Int J Mol Sci 13:11705–11717

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Malek, A. (2013). In Vivo and In Vitro Properties of Ovarian Cancer Cells. In: Malek, A., Tchernitsa, O. (eds) Ovarian Cancer. Methods in Molecular Biology, vol 1049. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-547-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-547-7_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-546-0

  • Online ISBN: 978-1-62703-547-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics