Skip to main content

Advertisement

Log in

In vitro evaluation of clinical activity and toxicity of anticancer drugs using tumor cells from patients and cells representing normal tissues

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate a phenotypic cell panel with tumor cells from various patients and normal cells for preclinical profiles of antitumor efficacy and toxicity of anticancer drugs.

Methods

The antitumor activity of fourteen anticancer drugs was tested in over one hundred tumor samples from patients with solid or hematological malignancies. Drug activity against four normal cell types was used for the assessment of normal tissue toxicity. In vitro activity of the drugs was compared with indications approved by the Food and Drug Administration and established adverse event profiles.

Results

In general, in vitro drug activity in tumor cells from patients reflected known clinical activity of the drugs investigated. For example, the clinical activity of imatinib in chronic myeloid leukemia was clearly detected in the tumor panel. Further, and in accordance with clinical use, cisplatin and bortezomib showed high activity in ovarian cancer and myeloma samples, respectively. The normal cell models roughly reflected known clinical toxicity profiles and were able to detect differences in therapeutic index, e.g., between targeted drugs and classical cytotoxic agents. For example, the high tolerability of imatinib and the well-known renal toxicity of cisplatin were demonstrated.

Conclusions

In preclinical drug development, primary tumor cells from patients can be used for the prediction of cancer diagnosis–specific activity and may aid in the selection of diagnoses for clinical trials. By using tumor and toxicity panels together, information about therapeutic index may be derived, which may be useful when choosing among drug candidates with similar tumor effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Damia G, D’Incalci M (2009) Contemporary pre-clinical development of anticancer agents–what are the optimal preclinical models? Eur J Cancer 45:2768–2781

    Article  PubMed  CAS  Google Scholar 

  2. Voskoglou-Nomikos T, Pater JL, Seymour L (2003) Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 9:4227–4239

    PubMed  Google Scholar 

  3. Peterson JK, Houghton PJ (2004) Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur J Cancer 40:837–844

    Article  PubMed  CAS  Google Scholar 

  4. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM et al (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84:1424–1431

    Article  PubMed  CAS  Google Scholar 

  5. Sharma SV, Haber DA, Settleman J (2010) Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nature reviews 10:241–253

    Article  PubMed  CAS  Google Scholar 

  6. Li W, Lam M, Choy D, Birkeland A, Sullivan ME et al (2006) Human primary renal cells as a model for toxicity assessment of chemo-therapeutic drugs. Toxicol In Vitro 20:669–676

    Article  PubMed  CAS  Google Scholar 

  7. Li AP, Bode C, Sakai Y (2004) A novel in vitro system, the integrated discrete multiple organ cell culture (IdMOC) system, for the evaluation of human drug toxicity: comparative cytotoxicity of tamoxifen towards normal human cells from five major organs and MCF-7 adenocarcinoma breast cancer cells. Chem Biol Interact 150:129–136

    Article  PubMed  CAS  Google Scholar 

  8. Bosanquet AG, Bell PB (2004) Ex vivo therapeutic index by drug sensitivity assay using fresh human normal and tumor cells. J Exp Ther Oncol 4:145–154

    PubMed  CAS  Google Scholar 

  9. Li W, Lam MS, Birkeland A, Riffel A, Montana L et al (2006) Cell-based assays for profiling activity and safety properties of cancer drugs. J Pharmacol Toxicol Methods 54:313–319

    Article  PubMed  CAS  Google Scholar 

  10. Fridborg H, Jonsson E, Nygren P, Larsson R (1999) Relationship between diagnosis-specific activity of cytotoxic drugs in fresh human tumour cells ex vivo and in the clinic. Eur J Cancer 35:424–432

    Article  PubMed  CAS  Google Scholar 

  11. Lindhagen E, Nygren P, Larsson R (2008) The fluorometric microculture cytotoxicity assay. Nat Protoc 3:1364–1369

    Article  PubMed  CAS  Google Scholar 

  12. Haglund C, Aleskog A, Hakansson LD, Hoglund M, Jacobsson S et al (2010) The FMCA-GM assays, high throughput non-clonogenic alternatives to CFU-GM in preclinical hematotoxicity testing. Toxicol Lett 194:102–107

    Article  PubMed  CAS  Google Scholar 

  13. Larsson R, Kristensen J, Sandberg C, Nygren P (1992) Laboratory determination of chemotherapeutic drug resistance in tumor cells from patients with leukemia, using a fluorometric microculture cytotoxicity assay (FMCA). Int J Cancer 50:177–185

    Article  PubMed  CAS  Google Scholar 

  14. FDA (2010) http://dailymed.nlm.nih.gov/dailymed/about.cfm. Food and Drug Administration. Available via Food and Drug Administration http://dailymed.nlm.nih.gov/dailymed/about.cfm. Accessed October 2010

  15. Ramström H (ed) (2009) Läkemedelsboken. 17 edn. Apoteket AB, Stockholm

    Google Scholar 

  16. FASS (ed) (2009) FASS. The Swedish Drug Compendium, Läkemedelsindustriförenningen AB

  17. Kintzel PE (2001) Anticancer drug-induced kidney disorders. Drug Saf 24:19–38

    Article  PubMed  CAS  Google Scholar 

  18. Wolf D, Rumpold H (2009) A benefit-risk assessment of imatinib in chronic myeloid leukaemia and gastrointestinal stromal tumours. Drug Saf 32:1001–1015

    Article  PubMed  CAS  Google Scholar 

  19. Sanz M, Burnett A, Lo-Coco F, Lowenberg B (2009) FLT3 inhibition as a targeted therapy for acute myeloid leukemia. Curr Opin Oncol 21:594–600

    Article  PubMed  CAS  Google Scholar 

  20. Kim ES, Hirsh V, Mok T, Socinski MA, Gervais R et al (2008) Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet 372:1809–1818

    Article  PubMed  CAS  Google Scholar 

  21. Lindhagen E, Eriksson A, Wickstrom M, Danielsson K, Grundmark B et al (2008) Significant cytotoxic activity in vitro of the EGFR tyrosine kinase inhibitor gefitinib in acute myeloblastic leukaemia. Eur J Haematol 81:344–353

    PubMed  CAS  Google Scholar 

  22. Boehrer S, Ades L, Galluzzi L, Tajeddine N, Tailler M et al (2008) Erlotinib and gefitinib for the treatment of myelodysplastic syndrome and acute myeloid leukemia: a preclinical comparison. Biochem Pharmacol 76:1417–1425

    Article  PubMed  CAS  Google Scholar 

  23. Stegmaier K, Corsello SM, Ross KN, Wong JS, Deangelo DJ et al (2005) Gefitinib induces myeloid differentiation of acute myeloid leukemia. Blood 106:2841–2848

    Article  PubMed  CAS  Google Scholar 

  24. Hahn CK, Berchuck JE, Ross KN, Kakoza RM, Clauser K et al (2009) Proteomic and genetic approaches identify Syk as an AML target. Cancer Cell 16:281–294

    Article  PubMed  CAS  Google Scholar 

  25. Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E et al (2005) Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 105:54–60

    Article  PubMed  CAS  Google Scholar 

  26. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449–456

    Article  PubMed  CAS  Google Scholar 

  27. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R et al (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356:2271–2281

    Article  PubMed  CAS  Google Scholar 

  28. Hess G, Herbrecht R, Romaguera J, Verhoef G, Crump M et al (2009) Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol 27:3822–3829

    Article  PubMed  CAS  Google Scholar 

  29. EMEA EMA Document Number EMA/783677/2009. Accessed 2010/09/30 2010

  30. Holbeck SL, Collins JM, Doroshow JH (2010) Analysis of Food and Drug Administration-approved anticancer agents in the NCI60 panel of human tumor cell lines. Mol Cancer Ther 9:1451–1460

    Article  PubMed  CAS  Google Scholar 

  31. Lonial S, Waller EK, Richardson PG, Jagannath S, Orlowski RZ et al (2005) Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood 106:3777–3784

    Article  PubMed  CAS  Google Scholar 

  32. Pessina A, Albella B, Bayo M, Bueren J, Brantom P et al (2003) Application of the CFU-GM assay to predict acute drug-induced neutropenia: an international blind trial to validate a prediction model for the maximum tolerated dose (MTD) of myelosuppressive xenobiotics. Toxicol Sci 75:355–367

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The skillful technical assistance of Anna-Karin Lannergård, Christina Leek, Lena Lenhammar, David Munro and Linda Rickardson is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Haglund.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haglund, C., Åleskog, A., Nygren, P. et al. In vitro evaluation of clinical activity and toxicity of anticancer drugs using tumor cells from patients and cells representing normal tissues. Cancer Chemother Pharmacol 69, 697–707 (2012). https://doi.org/10.1007/s00280-011-1746-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-011-1746-1

Keywords

Navigation