Skip to main content

Sequelae of Hypertension in Children and Adolescents

  • Chapter
  • First Online:
Pediatric Hypertension

Abstract

Hypertension is a well-characterized risk factor for the development of cardiovascular, cerebrovascular, and renal disease in adults. More recently, data obtained from autopsy studies as well as noninvasive imaging techniques have demonstrated that similar end-organ changes occur in children and adolescents with mild to moderate elevations in blood pressure. Specifically, chronic elevations in blood pressure in pediatric patients lead to changes in left atrial as well as left ventricular structure. These cardiac changes occur in parallel with alterations in the vascular system and subsequent development of atherosclerosis. Subclinical changes in renal function and microalbumin excretion are also noted in these patients. Recent studies have highlighted the impact of mild to moderate elevations in blood pressure on cognitive functioning in children. The adverse effects of severe hypertension in children and adolescents on these organ systems are also well known. Although additional longitudinal studies are required to elucidate the significance of these alterations, children with elevated blood pressures must be identified and treated appropriately in order to improve their long-term outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kearney PM, Whelton M, Muntner P, et al. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23.

    PubMed  Google Scholar 

  2. United States Renal Data System (USRDS). Annual report. 2011. www.usrds.org

  3. Trogdon JG, Nwaise IA, Tangka FK, et al. The economic burden of chronic cardiovascular disease for major insurers. Health Promot Pract. 2007;8: 234–42.

    Article  PubMed  Google Scholar 

  4. Cohen JD. Hypertension epidemiology and economic burden: refining risk assessment to lower costs. Manag Care. 2009;18:51–8.

    PubMed  Google Scholar 

  5. Elksabany AM, Urbina EM, Daniels SR, et al. Prediction of adult hypertension by K4 and K5 diastolic blood pressure in children: the Bogalusa Heart Study. J Pediatr. 1998;132:687–92.

    Article  Google Scholar 

  6. Chen X, Wang Y. Tracking of blood pressure for childhood to adulthood: a systematic review and metaregression analysis. Circulation. 2008;117: 3171–80.

    Article  PubMed  Google Scholar 

  7. Hansen ML, Gunn PW, Kaelber DC. Underdiagnosis of hypertension in children and adolescents. JAMA. 2007;298:874–9.

    Article  CAS  PubMed  Google Scholar 

  8. Mitsnefes MM. Hypertension in children and adolescents. Pediatr Clin North Am. 2006;53:493–512.

    Article  PubMed  Google Scholar 

  9. Neaton JD, Grimm Jr RH, Prineas RJ, et al. Treatment of mild hypertension study. Final results. JAMA. 1993;270:713–24.

    Article  CAS  PubMed  Google Scholar 

  10. Croix B, Feig DI. Childhood hypertension is not a silent disease. Pediatr Nephrol. 2006;21:527–32.

    Article  PubMed  Google Scholar 

  11. Haider AW, Larson MG, Franklin SS, et al. Systolic blood pressure, diastolic blood pressure, and pulse pressure as predictors of risk for congestive heart failure in the Framingham Heart Study. Ann Intern Med. 2003;138:10–6.

    Article  PubMed  Google Scholar 

  12. Kostis JB, Davis BR, Cutler J, for the SHEP cooperative Research Group, et al. Prevention of heart failure by antihypertensive drug treatment in older persons with isolated systolic hypertension. JAMA. 1997;278:212–6.

    Article  CAS  PubMed  Google Scholar 

  13. Kenchaiah S, Pfeffer MA. Cardiac remodeling in systemic hypertension. Med Clin North Am. 2004; 88:115–30.

    Article  PubMed  Google Scholar 

  14. Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation. 2000;102:470–9.

    Article  CAS  PubMed  Google Scholar 

  15. Opie LH, Commerford PJ, Gersh BJ, et al. Controversies in ventricular remodeling. Lancet. 2006;367:356–67.

    Article  PubMed  Google Scholar 

  16. Cohn JN, Ferrari R, Sharpe N, on behalf of an International Forum on Cardiac remodeling. Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol. 2000;35: 569–82.

    Article  CAS  PubMed  Google Scholar 

  17. Drazner MH. The transition from hypertrophy to failure: how certain are we? Circulation. 2005;112: 936–8.

    Article  PubMed  Google Scholar 

  18. Bowman JC, Steinberg SF, Jiang T, et al. Expression of protein kinase C beta in the heart causes hypertrophy in adult mice and sudden death in neonates. J Clin Invest. 1997;100:2189–95.

    Article  CAS  PubMed  Google Scholar 

  19. Brull D, Dhamrait S, Myerson S, et al. Bradykinin B2BKR receptor polymorphism and left ventricular growth response. Lancet. 2001;358:1155–6.

    Article  CAS  PubMed  Google Scholar 

  20. Muscholll MW, Schunkert H, Muders F, et al. Neurohormonal activity and left ventricular geometry in patients with essential arterial hypertension. Am Heart J. 1998;135:58–66.

    Article  Google Scholar 

  21. Velagaleti RS, Gona P, Levy D, et al. Relations of biomarkers representing distinct biological pathways to left ventricular geometry. Circulation. 2008;118:2252–8.

    Article  CAS  PubMed  Google Scholar 

  22. Benjamin EJ, D’Agostino RB, Belanger AJ, et al. Left atrial size and the risk of stroke and death: The Framingham Heart Study. Circulation. 1995;92: 835–41.

    Article  CAS  PubMed  Google Scholar 

  23. Gottdiener JS, Reda DJ, Williams DW, et al. Left atrial size in hypertensive men: influence of obesity, race, and age. J Am Coll Cardiol. 1997;29:651–8.

    Article  CAS  PubMed  Google Scholar 

  24. Vaziri S, Lauer M, Benjamin E, et al. Influence of blood pressure on left atrial size. Hypertension. 1995;25:1155–60.

    Article  CAS  PubMed  Google Scholar 

  25. Daniels SR, Witt SA, Glascock B, et al. Left atrial size in children with hypertension: the influence of obesity, blood pressure, and left ventricular mass. J Pediatr. 2002;141:186–90.

    Article  PubMed  Google Scholar 

  26. Kannel WB, Gordon T, Castelli WP, et al. Electrocardiographic left ventricular hypertrophy and risk of coronary heart disease: the Framingham study. Ann Intern Med. 1970;72:813–22.

    Article  CAS  PubMed  Google Scholar 

  27. Pewsner D, Juni P, Egger M, et al. Accuracy of electrocardiography in diagnosis of left ventricular hypertrophy in arterial hypertension: systematic review. BMJ. 2008;335:711.

    Article  Google Scholar 

  28. Levy D, Garrison RJ, Savage DD, et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.

    Article  CAS  PubMed  Google Scholar 

  29. Verdecchia P, Carini G, Circo A, et al. Left ventricular mass and cardiovascular morbidity in essential hypertension: the MAVI study. J Am Coll Cardiol. 2001;38:1829–35.

    Article  CAS  PubMed  Google Scholar 

  30. Sorof JM, Turner J, Martin DS, et al. Cardiovascular risk factors and sequelae in hypertensive children identified by referral versus school-based screening. Hypertension. 2004;43:214–8.

    Article  CAS  PubMed  Google Scholar 

  31. Litwin M, Niemirska A, Sladowska J, et al. Left ventricular hypertrophy and arterial wall thickening in children with essential hypertension. Pediatr Nephrol. 2006;21:811–9.

    Article  PubMed  Google Scholar 

  32. McNiece KL, Gupta-Malhotra M, Samuels J, et al. Left ventricular hypertrophy in hypertensive adolescents: analysis of risk by 2004 National High Blood Pressure Education Program Working Group staging criteria. Hypertension. 2007;50:392–5.

    Article  CAS  PubMed  Google Scholar 

  33. Brady TM, Fivush B, Flynn JT, et al. Ability of blood pressure to predict left ventricular hypertrophy in children with primary hypertension. J Pediatr. 2008;152:73–8.

    Article  PubMed  Google Scholar 

  34. Kavey R-E, Kveselis DA, Atallah N, et al. White coat hypertension in childhood: evidence for an end-organ effect. J Pediatr. 2007;150:491–7.

    Article  PubMed  Google Scholar 

  35. Hanevold C, Waller J, Daniels D, et al. The effects of obesity, gender, and ethnic group on left ventricular hypertrophy and geometry in hypertensive children: a collaborative study of the International Pediatric Hypertension Association. Pediatrics. 2004;113: 328–33.

    Article  PubMed  Google Scholar 

  36. Urbina EM, Khoury PR, McCoy C, et al. Cardiac and vascular consequences of pre-hypertension in youth. J Clin Hypertens. 2011;13:332–42.

    Article  Google Scholar 

  37. Richey PA, DiSessa TG, Hastings MC, et al. Ambulatory blood pressure and increased left ventricular mass in children at risk for hypertension. J Pediatr. 2008;152:343–8.

    Article  PubMed  Google Scholar 

  38. Richey PA, Somes TG, Alpert GW, et al. Left ventricular geometry in children and adolescents with primary hypertension. Am J Hypertens. 2010;23: 24–9.

    Article  PubMed  Google Scholar 

  39. Brady TM, Fivush B, Parekh RS, et al. Racial difference among children with primary hypertension. Pediatrics. 2010;126:931–7.

    Article  PubMed  Google Scholar 

  40. Sladowska-Kozlowska J, Litwin M, Niemirska A, et al. Change in left ventricular geometry during antihypertensive treatment in children with primary hypertension. Pediatr Nephrol. 2011;26:2201–9.

    Article  PubMed  Google Scholar 

  41. Daniel SR, Loggie JM, Khoury P, et al. Left ventricular geometry and severe left ventricular hypertrophy in children and adolescents with essential hypertension. Circulation. 1998;97:1907–11.

    Article  Google Scholar 

  42. Fagard R, Pardaens K. Left ventricular diastolic function predicts outcome in uncomplicated hypertension. Am J Hypertens. 2001;14:504–8.

    Article  CAS  PubMed  Google Scholar 

  43. Snider AR, Gidding SS, Rocchini AP, et al. Doppler evaluation of left ventricular diastolic filling in children with systemic hypertension. Am J Cardiol. 1985;56:921–6.

    Article  CAS  PubMed  Google Scholar 

  44. Johnson MC, Bergerse LJ, Beck A, et al. Diastolic function and tachycardia in hypertensive children. Am J Hypertens. 1999;12:1009–114.

    Article  CAS  PubMed  Google Scholar 

  45. Border WL, Kimball TR, Witt SA, et al. Diastolic filling abnormalities in children with essential hypertension. J Pediatr. 2007;150:503–9.

    Article  PubMed  Google Scholar 

  46. Laurent S, Boutouyrie P. Recent advances in arterial stiffness and wave reflection in human hypertension. Hypertension. 2007;49:1202–6.

    Article  CAS  PubMed  Google Scholar 

  47. Humphrey JD. Mechanisms of arterial remodeling in hypertension. Coupled roles of wall shear and intramural stress. Hypertension. 2008;52:195–200.

    Article  CAS  PubMed  Google Scholar 

  48. Duprez DA. Role of the renin-angiotensin-aldosterone system in vascular remodeling and inflammation: a clinical review. J Hypertens. 2006; 24:983–91.

    Article  CAS  PubMed  Google Scholar 

  49. Folkow B. Pathogenesis of structural vascular changes in hypertension. J Hypertens. 2004;22: 1231–3.

    Article  CAS  PubMed  Google Scholar 

  50. Hodis HN, Mack WJ, LaBree L, et al. The role of carotid arterial intima-media thickness in predicting clinical coronary events. Ann Intern Med. 1998;128: 262–9.

    Article  CAS  PubMed  Google Scholar 

  51. Sorof JM, Alexandrov AV, Cardwell G, et al. Carotid artery intimal-medial thickness and left ventricular hypertrophy in children with elevated blood pressure. Pediatrics. 2003;111:61–6.

    Article  PubMed  Google Scholar 

  52. Li S, Chen W, Srinivasan SR, et al. Childhood cardiovascular risk factors and carotid vascular changes in adulthood: the Bogalusa Heart Study. JAMA. 2003;290:2271–6.

    Article  CAS  PubMed  Google Scholar 

  53. Lande MB, Carson NL, Roy J, et al. Effects of childhood primary hypertension on carotid intima media thickness: a matched controlled study. Hypertension. 2006;48:40–4.

    Article  CAS  PubMed  Google Scholar 

  54. Dawson JD, Sonka M, Blecha MB, et al. Risk factors associated with aortic and carotid intima-media thickness in adolescents and young adults: the Muscatine Offspring Study. J Am Coll Cardiol. 2009;53:2273–9.

    Article  PubMed  Google Scholar 

  55. Lim HS, Lip GYH. Arterial stiffness: beyond pulse wave velocity and its measurement. J Hum Hypertens. 2008;22:656–8.

    Article  CAS  PubMed  Google Scholar 

  56. Li S, Chen W, Srinivasan SR. Childhood blood pressure as a predictor of arterial stiffness in young adults. Hypertension. 2004;43:541–6.

    Article  PubMed  CAS  Google Scholar 

  57. Niboshi A, Hamaoka K, Sakata K, et al. Characteristics of brachial-ankle pulse wave velocity in Japanese children. Eur J Pediatr. 2006;165: 625–9.

    Article  PubMed  Google Scholar 

  58. Im JA, Lee JW, Shim JY, et al. Association between brachial-ankle pulse wave velocity and cardiovascular risk factors in healthy adolescents. J Pediatr. 2007;150:247–51.

    Article  PubMed  Google Scholar 

  59. McGill Jr HC, Strong JP, Tracy RE, Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group, et al. Relation of a postmortem renal index of hypertension to atherosclerosis in youth. Arterioscler Thromb Vasc Biol. 1995;15: 2222–8.

    Article  PubMed  Google Scholar 

  60. McGill HC, McMahan A, Herderick EE, et al. Effects of coronary heart disease risk factors on atherosclerosis of selected regions of the aorta and right coronary artery. Arterioscler Thromb Vasc Biol. 2000;20:836–45.

    Article  PubMed  Google Scholar 

  61. McMahan CA, Gidding SS, Malcolm GT, et al. Comparison of coronary heart disease risk factors in autopsied young adults from the PDAY study with living young adults from the CARDIA study. Cardiovasc Pathol. 2007;16:151–8.

    Article  PubMed  Google Scholar 

  62. Newman III WP, Freedman DS, Voors AW, et al. Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis: the Bogalusa Heart Study. N Engl J Med. 1986;314:138–44.

    Article  PubMed  Google Scholar 

  63. Berenson GS, Srinivasan SR, Bao W, et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med. 1998;335:1650–6.

    Article  Google Scholar 

  64. Peretz A, Leotta DF, Sullivan JH, et al. Flow mediated dilation of the brachial artery: an investigation of methods requiring further standardization. BMC Cardiovasc Disord. 2007;7:11–8.

    Article  PubMed  Google Scholar 

  65. Juonala M, Viikari JS, Laiinen T, et al. Interrelations between brachial endothelial function and carotid intima-media thickness in young adults: the cardiovascular risk in young Finns study. Circulation. 2004;110:2918–23.

    Article  PubMed  Google Scholar 

  66. Meyer AA, Kundt G, Steiner M, et al. Impaired flow-mediated vasodilation, carotid artery intima-mediated thickening and elevated endothelial plasma markers in obese children: the impact of cardiovascular risk factors. Pediatrics. 2006;117:1560–7.

    Article  PubMed  Google Scholar 

  67. Lazdam M, Lewandowski AJ, Kylintireas I. Impaired endothelial responses in apparently healthy young people associated with subclinical variation in blood pressure and cardiovascular phenotype. Am J Hypertens. 2012;25:46–53.

    Article  PubMed  Google Scholar 

  68. Kaess BM, Rong J, Larson MG, et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308:875–81.

    Article  CAS  PubMed  Google Scholar 

  69. Walker WG, Neaton JD, Culter JA. Renal function changes in hypertensive members of the Multiple Risk Factor Intervention Trial. Racial and treatment effects. JAMA. 1992;268:3085–91.

    Article  CAS  PubMed  Google Scholar 

  70. Hill GS. Hypertensive nephrosclerosis. Curr Opin Nephrol Hypertens. 2008;17:266–70.

    Article  PubMed  Google Scholar 

  71. Cirillo M, Stellato D, Laurenzi M, The GUBBIO Study Collaborative Research Group, et al. Pulse pressure and isolated systolic hypertension: association with microalbuminuria. Kidney Int. 2000;58:1211–8.

    Article  CAS  PubMed  Google Scholar 

  72. Hillege HL, Fidler V, Diercks GF, et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in the general population. Circulation. 2002;106:1777–82.

    Article  CAS  PubMed  Google Scholar 

  73. Hoq S, Chen W, Srinivasan SR, et al. Childhood blood pressure predicts adult microalbuminuria in African Americans, but not in whites: the Bogalusa Heart Study. Am J Hypertens. 2002;15:1036–41.

    Article  CAS  PubMed  Google Scholar 

  74. Lubrano R, Travasso E, Raggi C, et al. Blood pressure load, proteinuria, and renal function in prehypertensive children. Pediatr Nephrol. 2009;24: 823–31.

    Article  PubMed  Google Scholar 

  75. Seeman T, Pohl M, Palyzova D, et al. Microalbuminuria in children with primary and white-coat hypertension. Pediatr Nephrol. 2012;27: 461–7.

    Article  PubMed  Google Scholar 

  76. Assadi F. Relation of left ventricular hypertrophy to microalbuminuria and c-reactive protein in children and adolescents with essential hypertension. Pediatr Cardiol. 2008;29:580–4.

    Article  PubMed  Google Scholar 

  77. Cuspidi C, Salerno M, Salerno DE, et al. High prevalence of retinal vascular changes in never-treated essential hypertensives: an inter- and intra-observer reproducibility study with non-mydriatic retinography. Blood Press. 2004;13:25–30.

    Article  PubMed  Google Scholar 

  78. Porta M, Grosso A, Vegio F. Hypertensive retinopathy: there’s more than meets the eye. J Hypertens. 2005;23:683–96.

    Article  CAS  PubMed  Google Scholar 

  79. Liao D, Cooper L, Cai J, et al. The prevalence and severity of white matter lesions, their relationship with age, ethnicity, gender, and cardiovascular disease risk factors: the ARIC study. Neuroepidemiology. 1997;16:149–62.

    CAS  PubMed  Google Scholar 

  80. Skalina MEL, Annable WL, Kleigman RM, et al. Hypertensive retinopathy in the newborn infant. J Pediatr. 1983;103:781–6.

    Article  CAS  PubMed  Google Scholar 

  81. Daniels SR, Lipman MJ, Burke MJ, et al. The prevalence of retinal vascular abnormalities in children and adolescents with essential hypertension. Am J Ophthalmol. 1991;111:205–8.

    CAS  PubMed  Google Scholar 

  82. Daniels SR, Lipman MJ, Burke MJ, et al. Determinants of retinal vascular abnormalities in children and adolescents with essential hypertension. J Hum Hypertens. 1993;7:223–8.

    CAS  PubMed  Google Scholar 

  83. Sun C, Liew G, Wang JJ, et al. Retinal vascular caliber, blood pressure, and cardiovascular risk factors in an Asian population: the Singapore Malay Eye Study. Invest Ophthalmol Vis Sci. 2008;49: 1784–90.

    Article  PubMed  Google Scholar 

  84. Mitchell P, Chueng N, de Haseth K, et al. Blood pressure and retinal arteriolar narrowing in children. Hypertension. 2007;49:1156–62.

    Article  CAS  PubMed  Google Scholar 

  85. Van Boxtel MPJ, Henskens LHG, Kroon AA, et al. Ambulatory blood pressure, asymptomatic cerebrovascular damage and cognitive function in essential hypertension. J Hum Hypertens. 2006;20:5–13.

    Article  PubMed  Google Scholar 

  86. Robbins MA, Elias MF, Elias PK, et al. Blood pressure and cognitive function in an African-American and a Caucasian-American sample: the Maine-Syracuse Study. Psychosom Med. 2005;67:707–14.

    Article  PubMed  Google Scholar 

  87. Lande MB, Kaczorowski JM, Auinger P, et al. Elevated blood pressure and decreased cognitive function among school-age children and adolescents in the United States. J Pediatr. 2003;143:720–4.

    Article  PubMed  Google Scholar 

  88. Lande MB, Adams H, Falkner B, et al. Parental assessments of internalizing and externalizing behavior and executive function in children with primary hypertension. J Pediatr. 2009;154:207–12.

    Article  PubMed  Google Scholar 

  89. Adams HR, Szilagyi PG, Gebhardt L, et al. Learning and problems among children with pediatric primary hypertension. Pediatrics. 2010;126:e1425–9.

    Article  PubMed  Google Scholar 

  90. Wong LJ, Kupferman JC, Prohovnik I, et al. Hypertension impairs vascular reactivity in the pediatric brain. Stroke. 2011;42:1834–8.

    Article  PubMed  Google Scholar 

  91. Raz N, Rodrigue K, Acker J. Hypertension and the brain: vulnerability of the prefrontal regions and executive functions. Behav Neurosci. 2003;117: 1169–80.

    Article  PubMed  Google Scholar 

  92. Adelman RD, Coppo R, Dillon MJ. The emergency management of severe hypertension. Pediatr Nephrol. 2000;14:422–7.

    Article  CAS  PubMed  Google Scholar 

  93. Flynn JT, Tullus K. Severe hypertension in children and adolescents: pathophysiology and treatment. Pediatr Nephrol. 2009;24:1101–12.

    Article  PubMed  Google Scholar 

  94. Van Lieshout JJ, Wieling W, Karemaker JM, et al. Syncope, cerebral perfusion, and oxygenation. J Appl Physiol. 2003;94:833–48.

    PubMed  Google Scholar 

  95. Immick RV, van den Born BJ, van Montfrans GA, et al. Impaired cerebral autoregulation in patients with malignant hypertension. Circulation. 2004;110: 2241–5.

    Article  Google Scholar 

  96. Zampaglione B, Pascale C, Marchiso M, et al. Hypertensive urgencies and emergencies: prevalence and clinical presentation. Hypertension. 1996;27: 144–7.

    Article  CAS  PubMed  Google Scholar 

  97. Lee VH, Wijdicks EFM, Manno EM, et al. Clinical spectrum of reversible posterior leukoencephalopathy syndrome. Arch Neurol. 2008;65:205–10.

    Article  PubMed  Google Scholar 

  98. Hulse JA, Taylor DS, Dillon MJ. Blindness and paraplegia in severe childhood hypertension. Lancet. 1979;2:553–6.

    Article  CAS  PubMed  Google Scholar 

  99. Browning AC, Mengher LS, Gregson RM, et al. Visual outcome of malignant hypertension in young people. Arch Dis Child. 2001;85:401–3.

    Article  CAS  PubMed  Google Scholar 

  100. Logan P, Eustace P, Robinson R. Hypertensive retinopathy: a cause of decreased visual acuity in children. J Pediatr Ophthalmol Strabismus. 1992;29:287–9.

    CAS  PubMed  Google Scholar 

  101. Trompeter RS, Smith RL, Hoare RD, et al. Neurological complications of arterial hypertension. Arch Dis Child. 1982;57:913–7.

    Article  CAS  PubMed  Google Scholar 

  102. Aggarwal M, Khan IA. Hypertensive crisis: hypertensive emergencies and urgencies. Cardiol Clin. 2006;24:135–46.

    Article  PubMed  Google Scholar 

  103. Nadar S, Beevers DG, Lip GY. Echocardiographic changes in patients with malignant phase hypertension: the West Birmingham Malignant Hypertension Registry. J Hum Hypertens. 2005;19:69–75.

    Article  CAS  PubMed  Google Scholar 

  104. Frohlich ED. Target organ involvement in hypertension: a realistic promise of prevention and reversal. Med Clin North Am. 2004;88:1–9.

    Article  CAS  Google Scholar 

  105. Deal JE, Barratt TM, Dillon MJ. Management of hypertensive emergencies. Arch Dis Child. 1992;67: 1089–92.

    Article  CAS  PubMed  Google Scholar 

  106. Van den Born BJH, Honnebier UPF, Koopmans RP, et al. Microangiopathic hemolysis and renal failure in malignant hypertension. Hypertension. 2005;45: 246–51.

    Article  PubMed  CAS  Google Scholar 

  107. Guerin C, Gonthier R, Berthoux FC. Long-term prognosis in malignant and accelerated hypertension. Nephrol Dial Transplant. 1988;3:33–7.

    CAS  PubMed  Google Scholar 

  108. Gudbrandsson T, Hansson L, Herlitz H, et al. Malignant hypertension. Improving prognosis in a rare disease. Acta Med Scand. 1979;206:495–9.

    Article  CAS  PubMed  Google Scholar 

  109. Gill DG, Mehdes da Costa B, Cameron JS, et al. Analysis of 100 children with severe and persistent hypertension. Arch Dis Child. 1976;51:951–6.

    Article  CAS  PubMed  Google Scholar 

  110. Kumar P, Aurora P, Khmer V, et al. Malignant hypertension in children in India. Nephrol Dial Transplant. 1996;11:1261–6.

    CAS  PubMed  Google Scholar 

  111. Tanaka H, Tatiana T, Suzuki K, et al. Acute renal failure due to hypertension: malignant hypertension in an adolescent. Pediatr Int. 2003;45:342–4.

    Article  PubMed  Google Scholar 

  112. Adelman RD, Russo J. Malignant hypertension: recovery of renal function after treatment with antihypertensive medications and hemodialysis. J Pediatr. 1981;98:766.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald J. Weaver Jr. M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weaver, D.J., Mitsnefes, M.M. (2013). Sequelae of Hypertension in Children and Adolescents. In: Flynn, J., Ingelfinger, J., Portman, R. (eds) Pediatric Hypertension. Clinical Hypertension and Vascular Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-490-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-490-6_29

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-489-0

  • Online ISBN: 978-1-62703-490-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics