Skip to main content

Characterization of Polymer–Enzyme Composite Biosensors for Brain Monitoring In Vivo

  • Protocol
  • First Online:
Microelectrode Biosensors

Part of the book series: Neuromethods ((NM,volume 80))

  • 1361 Accesses

Abstract

The application of biosensors for near real-time monitoring of key energy and signaling molecules in the intact brain poses major challenges at a number of levels. In this context, amperometric biosensor functionality is impacted by a variety of physicochemical and biological phenomena, including enzyme substrate and co-substrate sensitivity, interference from endogenous electroactive species, fabrication and response consequences of miniaturization for tissue implantation, and biocompatibility issues. Polymer–enzyme composite (PEC) implantable microbiosensors, incorporating a poly-o-phenylenediamine (PoPD) ultrathin permselective barrier, possess a variety of characteristics which make them suitable for long-term in-vivo electrochemical (LIVE) monitoring. This chapter reviews the use of PoPD in this context, and describes a battery of PEC sensitivity and selectivity parameters which allow development of the basic design in a systematic way in order to understand and improve their performance, and to diversify the analyte range of these novel probes of brain function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O’Neill RD, Lowry JP, Rocchitta G, McMahon CP, Serra PA (2008) Designing sensitive and selective polymer/enzyme composite biosensors for brain monitoring in vivo. Trends Anal Chem 27:78–88

    Google Scholar 

  2. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    PubMed  CAS  Google Scholar 

  3. Wilson GS, Johnson MA (2008) In-vivo electrochemistry: what can we learn about living systems? Chem Rev 108:2462–2481

    PubMed  CAS  Google Scholar 

  4. Dale N, Hatz S, Tian FM, Llaudet E (2005) Listening to the brain: microelectrode biosensors for neurochemicals. Trends Biotechnol 23:420–428

    PubMed  CAS  Google Scholar 

  5. Hirst ER, Yuan YJ, Xu WL, Bronlund JE (2008) Bond-rupture immunosensors—a review. Biosens Bioelectron 23:1759–1768

    PubMed  CAS  Google Scholar 

  6. Wanekaya AK, Chen W, Mulchandani A (2008) Recent biosensing developments in environmental security. J Environ Monit 10:703–712

    PubMed  CAS  Google Scholar 

  7. Sadik OA, Aluoch AO, Zhou AL (2009) Status of biomolecular recognition using electrochemical techniques. Biosens Bioelectron 24:2749–2765

    PubMed  CAS  Google Scholar 

  8. Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27:82–89

    PubMed  CAS  Google Scholar 

  9. Castillo J, Gaspar S, Leth S, Niculescu M, Mortari A, Bontidean I, Soukharev V, Dorneanu SA, Ryabov AD, Csoregi E (2004) Biosensors for life quality—design, development and applications. Sens Actuators B Chem 102:179–194

    Google Scholar 

  10. Wei D, Bailey MJA, Andrew P, Ryhanen T (2009) Electrochemical biosensors at the nanoscale. Lab Chip 9:2123–2131

    PubMed  CAS  Google Scholar 

  11. Lu QZ, Lin HL, Ge ST, Luo SL, Cai QY, Grimes CA (2009) Wireless, remote-query, and high sensitivity Escherichia coli O157:H7 biosensor based on the recognition action of Concanavalin A. Anal Chem 81:5846–5850

    PubMed  CAS  Google Scholar 

  12. McMahon CP, Rocchitta G, Kirwan SM, Killoran SJ, Serra PA, Lowry JP, O’Neill RD (2007) Oxygen tolerance of an implantable polymer/enzyme composite glutamate ­biosensor displaying polycation-enhanced ­substrate sensitivity. Biosens Bioelectron 22:1466–1473

    PubMed  CAS  Google Scholar 

  13. Schuvailo OM, Gaspar S, Soldatkin AP, Csoregi E (2007) Ultramicrobiosensor for the selective detection of glutamate. Electroanalysis 19:71–78

    CAS  Google Scholar 

  14. Lowry JP, O’Neill RD (2006) Neuroanalytical chemistry in vivo using electrochemical sensors. In: Grimes CA, Dickey EC, Pishko MV (eds) Encyclopedia of sensors. American Scientific, Los Angeles, CA, pp 501–524

    Google Scholar 

  15. Wilson GS, Gifford R (2005) Biosensors for real-time in vivo measurements. Biosens Bioelectron 20:2388–2403

    PubMed  CAS  Google Scholar 

  16. O’Neill RD, Lowry JP, Mas M (1998) Monitoring brain chemistry in vivo: voltammetric techniques, sensors and behavioral applications. Crit Rev Neurobiol 12:69–127

    PubMed  Google Scholar 

  17. Pantano P, Kuhr WG (1995) Enzyme-modified microelectrodes for in vivo neurochemical measurements. Electroanalysis 7:405–416

    CAS  Google Scholar 

  18. Watson CJ, Venton BJ, Kennedy RT (2006) In vivo measurements of neurotransmitters by microdialysis sampling. Anal Chem 78:1391–1399

    PubMed  Google Scholar 

  19. Lee GJ, Park JH, Park HK (2008) Microdialysis applications in neuroscience. Neurol Res 30:661–668

    PubMed  Google Scholar 

  20. Baldini F (2010) Microdialysis-based sensing in clinical applications. Anal Bioanal Chem 397:909–916

    PubMed  CAS  Google Scholar 

  21. Duff A, O’Neill RD (1994) Effect of probe size on the concentration of brain extracellular uric acid monitored with carbon paste electrodes. J Neurochem 62:1496–1502

    PubMed  CAS  Google Scholar 

  22. O’Neill RD, Gonzalez-Mora JL, Boutelle MG, Ormonde DE, Lowry JP, Duff A, Fumero B, Fillenz M, Mas M (1991) Anomalously high concentrations of brain extracellular uric acid detected with chronically implanted probes: implications for in vivo sampling techniques. J Neurochem 57:22–29

    PubMed  Google Scholar 

  23. Peters JL, Miner LH, Michael AC, Sesack SR (2004) Ultrastructure at carbon fiber microelectrode implantation sites after acute ­voltammetric measurements in the striatum of anesthetized rats. J Neurosci Methods 137:9–23

    PubMed  Google Scholar 

  24. Rutherford EC, Pomerleau F, Huettl P, Stromberg I, Gerhardt GA (2007) Chronic second-by-second measures of L-glutamate in the central nervous system of freely moving rats. J Neurochem 102:712–722

    PubMed  CAS  Google Scholar 

  25. John J, Ramanathan L, Siegel JM (2008) Rapid changes in glutamate levels in the posterior hypothalamus across sleep-wake states in freely behaving rats. Am J Physiol Regul Integr Comp Physiol 295:R2041–R2049

    PubMed  CAS  Google Scholar 

  26. Calia G, Rocchitta G, Migheli R, Puggioni GM, Spissu Y, Bazzu G, Mazzarello V, Lowry JP, O’Neill RD, Desole MS, Serra PA (2009) Biotelemetric monitoring of brain neurochemistry in conscious rats, using microsensors and biosensors. Sensors (Basel) 9:2511–2523

    CAS  Google Scholar 

  27. Dash MB, Douglas CL, Vyazovskiy VV, Cirelli C, Tononi G (2009) Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states. J Neurosci 29:580–589

    Google Scholar 

  28. Tian FM, Gourine AV, Huckstepp RTR, Dale N (2009) A microelectrode biosensor for real time monitoring of L-glutamate release. Anal Chim Acta 645:86–91

    PubMed  CAS  Google Scholar 

  29. Pernot P, Mothet JP, Schuvailo O, Soldatkin A, Pollegioni L, Pilone M, Adeline MT, Cespuglio R, Marinesco S (2008) Characterization of a yeast D-amino acid oxidase microbiosensor for D-serine detection in the central nervous system. Anal Chem 80:1589–1597

    PubMed  CAS  Google Scholar 

  30. Burmeister JJ, Gerhardt GA (2003) Ceramic-based multisite microelectrode arrays for in vivo electrochemical recordings of glutamate and other neurochemicals. Trends Anal Chem 22:498–502

    CAS  Google Scholar 

  31. Lowry JP, Ryan MR, O’Neill RD (1998) Behaviourally induced changes in extracellular levels of brain glutamate monitored at 1 s resolution with an implanted biosensor. Anal Commun 35:87–89

    CAS  Google Scholar 

  32. O’Neill RD (1994) Microvoltammetric techniques and sensors for monitoring neurochemical dynamics in vivo—a review. Analyst 119:767–779

    PubMed  Google Scholar 

  33. Hirano A, Sugawara M (2006) Receptors and enzymes for medical sensing of L-glutamate. Mini Rev Med Chem 6:1091–1100

    PubMed  CAS  Google Scholar 

  34. Hamdi N, Wang JJ, Walker E, Maidment NT, Monbouquette HG (2006) An electroenzymatic L-glutamate microbiosensor selective against dopamine. J Electroanal Chem 591:33–40

    CAS  Google Scholar 

  35. Chakraborty S, Raj CR (2007) Amperometric biosensing of glutamate using carbon nanotube based electrode. Electrochem Commun 9:1323–1330

    CAS  Google Scholar 

  36. Ahuja T, Mir IA, Kumar D, Rajesh (2007) Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28:791–805

    Google Scholar 

  37. Lojou E, Bianco P (2006) Application of the electrochemical concepts and techniques to amperometric biosensor devices. J Electroceram 16:79–91

    CAS  Google Scholar 

  38. Wilson GS, Hu YB (2000) Enzyme based biosensors for in vivo measurements. Chem Rev 100:2693–2704

    PubMed  CAS  Google Scholar 

  39. Rodriguez-Mozaz S, de Alda MJL, Barcelo D (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386:1025–1041

    PubMed  CAS  Google Scholar 

  40. O’Neill RD (1993) Sensor–tissue interactions in neurochemical analysis with carbon paste electrodes in vivo. Analyst 118:433–438

    PubMed  Google Scholar 

  41. Ahmad F, Christenson A, Bainbridge M, Yusof APM, Ab Ghani S (2007) Minimizing tissue–material interaction in microsensor for subcutaneous glucose monitoring. Biosens Bioelectron 22:1625–1632

    PubMed  CAS  Google Scholar 

  42. McMahon CP, O’Neill RD (2005) Polymer–enzyme composite biosensor with high glutamate sensitivity and low oxygen dependence. Anal Chem 77:1196–1199

    PubMed  CAS  Google Scholar 

  43. Koschwanez HE, Reichert WM (2007) In vitro, in vivo and post explantation testing of glucose-detecting biosensors: current methods and recommendations. Biomaterials 28:3687–3703

    PubMed  CAS  Google Scholar 

  44. Mitala JJ, Michael AC (2006) Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel. Anal Chim Acta 556:326–332

    CAS  Google Scholar 

  45. McAteer K, O’Neill RD (1996) Strategies for decreasing ascorbate interference at glucose oxidase-modified poly(o-phenylenediamine)-coated electrodes. Analyst 121:773–777

    CAS  Google Scholar 

  46. Lin L, Guthrie JT (2006) Novel oxygen-enhanced membrane assemblies for biosensors. J Memb Sci 278:173–180

    CAS  Google Scholar 

  47. McMahon CP, Killoran SJ, O’Neill RD (2005) Design variations of a polymer–enzyme composite biosensor for glucose: enhanced analyte sensitivity without increased oxygen dependence. J Electroanal Chem 580:193–202

    CAS  Google Scholar 

  48. Lowry JP, O’Neill RD, Boutelle MG, Fillenz M (1998) Continuous monitoring of extracellular glucose concentrations in the striatum of freely moving rats with an implanted glucose biosensor. J Neurochem 70:391–396

    PubMed  CAS  Google Scholar 

  49. Boutelle MG, Stanford C, Fillenz M, Albery WJ, Bartlett PN (1986) An amperometric enzyme electrode for monitoring brain glucose in the freely moving rat. Neurosci Lett 72:283–288

    PubMed  CAS  Google Scholar 

  50. Xin Q, Wightman RM (1997) Enzyme modified amperometric sensors for choline and acetylcholine with tetrathiafulvalene tetracyanoquinodimethane as the electron-transfer mediator. Anal Chim Acta 341:43–51

    CAS  Google Scholar 

  51. Jung CC, Hall EAH (1995) Impedance analysis of NMP–TCNQ at glucose oxidase interfaces. Anal Chem 67:2393–2400

    CAS  Google Scholar 

  52. Centonze D, Losito I, Malitesta C, Palmisano F, Zambonin PG (1997) Electrochemical immobilisation of enzymes on conducting organic salt electrodes: characterisation of an oxygen independent and interference-free glucose biosensor. J Electroanal Chem 435:103–111

    CAS  Google Scholar 

  53. Lowry JP, O’Neill RD (1992) Strategies for reducing ascorbate interference at glucose oxidase modified conducting organic salt electrodes. J Electroanal Chem 334:183–194

    CAS  Google Scholar 

  54. Rocchitta G, McMahon CP, Serra PA, Kirwan SM, Bolger FB, Lowry JP, O’Neill RD (2006) Significant enhancement of glutamate biosensor sensitivity, using a polycation-modified polymer/enzyme composite sensing layer. In: Di Chiara G, Carboni E, Valentini V, Acquas E, Bassareo V, Cadoni C (eds) Monitoring molecules in neuroscience. University of Cagliari, Cagliari, pp 331–333

    Google Scholar 

  55. Oldenziel WH, Dijkstra G, Cremers TIFH, Westerink BHC (2006) In vivo monitoring of extracellular glutamate in the brain with a microsensor. Brain Res 1118:34–42

    PubMed  CAS  Google Scholar 

  56. Garguilo MG, Michael AC (1996) Amperometric microsensors for monitoring choline in the extracellular fluid of brain. J Neurosci Methods 70:73–82

    PubMed  CAS  Google Scholar 

  57. Hu Y, Mitchell KM, Albahadily FN, Michaelis EK, Wilson GS (1994) Direct measurement of glutamate release in the brain using a dual enzyme-based electrochemical sensor. Brain Res 659:117–125

    PubMed  CAS  Google Scholar 

  58. Kulagina NV, Shankar L, Michael AC (1999) Monitoring glutamate and ascorbate in the extracellular space of brain tissue with electrochemical microsensors. Anal Chem 71:5093–5100

    PubMed  CAS  Google Scholar 

  59. Oka T, Tasaki C, Sezaki H, Sugawara M (2007) Implantation of a glass capillary-based enzyme electrode in mouse hippocampal slices for monitoring of L-glutamate release. Anal Bioanal Chem 388:1673–1679

    PubMed  CAS  Google Scholar 

  60. Oldenziel WH, Dijkstra G, Cremers TIFH, Westerink BHC (2006) Evaluation of hydrogel-coated glutamate microsensors. Anal Chem 78:3366–3378

    PubMed  CAS  Google Scholar 

  61. Kulagina NV, Michael AC (2003) Monitoring hydrogen peroxide in the extracellular space of the brain with amperometric microsensors. Anal Chem 75:4875–4881

    PubMed  CAS  Google Scholar 

  62. Schmidtke DW, Heller A (1998) Accuracy of the one-point in vivo calibration of “wired” glucose oxidase electrodes implanted in jugular veins of rats in periods of rapid rise and decline of the glucose concentration. Anal Chem 70:2149–2155

    PubMed  CAS  Google Scholar 

  63. O’Neill RD, Fillenz M, Sundstrom L, Rawlins JNP (1984) Voltammetrically monitored brain ascorbate as an index of excitatory amino acid release in the unrestrained rat. Neurosci Lett 52:227–233

    PubMed  Google Scholar 

  64. Burmeister JJ, Palmer M, Gerhardt GA (2003) Ceramic-based multisite microelectrode array for rapid choline measures in brain tissue. Anal Chim Acta 481:65–74

    CAS  Google Scholar 

  65. Konradsson-Geuken A, Gash CR, Alexander K, Pomerleau F, Huettl P, Gerhardt GA, Bruno JP (2009) Second-by-second analysis of alpha 7 nicotine receptor regulation of glutamate release in the prefrontal cortex of awake rats. Synapse 63:1069–1082

    PubMed  CAS  Google Scholar 

  66. Hascup KN, Hascup ER, Pomerleau F, Huettl P, Gerhardt GA (2008) Second-by-second measures of L-glutamate in the prefrontal cortex and striatum of freely moving mice. J Pharmacol Exp Ther 324:725–731

    PubMed  CAS  Google Scholar 

  67. Parikh V, Kozak R, Martinez V, Sarter M (2007) Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56:141–154

    PubMed  CAS  Google Scholar 

  68. Hu YB, Wilson GS (1997) Rapid changes in local extracellular rat brain glucose observed with an in vivo glucose sensor. J Neurochem 68:1745–1752

    PubMed  CAS  Google Scholar 

  69. Hu YB, Wilson GS (1997) A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem 69:1484–1490

    PubMed  CAS  Google Scholar 

  70. Walker E, Wang J, Hamdi N, Monbouquette HG, Maidment NT (2007) Selective detection of extracellular glutamate in brain tissue using microelectrode arrays coated with over-oxidized polypyrrole. Analyst 132:1107–1111

    PubMed  CAS  Google Scholar 

  71. Salazar P, Martin M, Roche R, Gonzalez-Mora JL, O’Neill RD (2010) Microbiosensors for glucose based on Prussian blue modified carbon fiber electrodes for in vivo monitoring in the central nervous system. Biosens Bioelectron 26:748–753

    PubMed  CAS  Google Scholar 

  72. Hocevar SB, Zivin M, Milutinovic A, Hawlina M, Hutton EA, Ogorevc B (2006) Simultaneous in vivo measurement of dopamine, serotonin and ascorbate in the striatum of experimental rats using voltammetric microprobe. Front Biosci 11:2782–2789

    PubMed  CAS  Google Scholar 

  73. Patel BA, Arundell M, Parker KH, Yeoman MS, O’Hare D (2006) Detection of nitric oxide release from single neurons in the pond snail, Lymnaea stagnalis. Anal Chem 78:7643–7648

    PubMed  CAS  Google Scholar 

  74. Ferreira NR, Ledo A, Frade JG, Gerhardt GA, Laranjinha J, Barbosa RM (2005) Electrochemical measurement of endogenously produced nitric oxide in brain slices using Nafion/o-phenylenediamine modified carbon fiber microelectrodes. Anal Chim Acta 535:1–7

    CAS  Google Scholar 

  75. Fillenz M, Lowry JP (1998) The relation between local cerebral blood flow and extracellular glucose concentration in rat striatum. Exp Physiol 83:233–238

    PubMed  CAS  Google Scholar 

  76. Malitesta C, Palmisano F, Torsi L, Zambonin PG (1990) Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film. Anal Chem 62:2735–2740

    PubMed  CAS  Google Scholar 

  77. Sasso SV, Pierce RJ, Walla R, Yacynych AM (1990) Electropolymerized 1,2-diaminobenzene as a means to prevent interferences and fouling and to stabilize immobilized enzyme in electrochemical biosensors. Anal Chem 62:1111–1117

    CAS  Google Scholar 

  78. Lowry JP, McAteer K, El Atrash SS, Duff A, O’Neill RD (1994) Characterization of glucose oxidase-modified poly(phenylenediamine)-coated electrodes in vitro and in vivo: homogeneous interference by ascorbic acid in hydrogen peroxide detection. Anal Chem 66:1754–1761

    CAS  Google Scholar 

  79. Palmisano F, Centonze D, Malitesta C, Zambonin PG (1995) Electrochemical immobilization of enzymes on conducting organic salt electrodes: preparation of an oxygen independent and interference-free glucose biosensor. J Electroanal Chem 381:235–237

    Google Scholar 

  80. Wang J, Chen L, Liu J, Lu F (1996) Enhanced selectivity and sensitivity of first-generation enzyme electrodes based on the coupling of rhodinized carbon paste transducers and permselective poly(o-phenylenediamine) coatings. Electroanalysis 8:1127–1130

    CAS  Google Scholar 

  81. Bartlett PN, Wang JH, James W (1998) Measurement of low glucose concentrations using a microelectrochemical enzyme transistor. Analyst 123:387–392

    CAS  Google Scholar 

  82. Reyes De Corcuera JI, Cavalieri RP, Powers JR (2005) Improved platinization conditions produce a 60-fold increase in sensitivity of amperometric biosensors using glucose oxidase immobilized in poly-o-phenylenediamine. J Electroanal Chem 575:229–241

    CAS  Google Scholar 

  83. Serra PA, Rocchitta G, Bazzu G, Manca A, Puggioni GM, Lowry JP, O’Neill RD (2007) Design and construction of a low cost single-supply embedded telemetry system for amperometric biosensor applications. Sens Actuators B 122:118–126

    Google Scholar 

  84. Rothwell SA, Killoran SJ, O’Neill RD (2010) Enzyme immobilization strategies and electropolymerization conditions to control sensitivity and selectivity parameters of a polymer–enzyme composite glucose biosensor. Sensors 10:6439–6462

    PubMed  CAS  Google Scholar 

  85. Salazar P, Martin M, Roche R, O’Neill RD, Gonzalez-Mora JL (2010) Prussian Blue-modified microelectrodes for selective transduction in enzyme-based amperometric microbiosensors for in vivo neurochemical monitoring. Electrochim Acta 55:6476–6484

    CAS  Google Scholar 

  86. Dempsey E, Wang J, Smyth MR (1993) Electropolymerised o-phenylenediamine film as means of immobilising lactate oxidase for a L-lactate biosensor. Talanta 40:445–451

    PubMed  CAS  Google Scholar 

  87. Palmisano F, Centonze D, Zambonin PG (1994) An in situ electrosynthesized amperometric biosensor based on lactate oxidase immobilized in a poly-o-phenylenediamine film: determination of lactate in serum by flow injection analysis. Biosens Bioelectron 9:471–479

    PubMed  CAS  Google Scholar 

  88. Schuvailo OM, Soldatkin OO, Lefebvre A, Cespuglio R, Soldatkin AP (2006) Highly selective microbiosensors for in vivo measurement of glucose, lactate and glutamate. Anal Chim Acta 573:110–116

    PubMed  Google Scholar 

  89. Cooper JM, Foreman PL, Glidle A, Ling TW, Pritchard DJ (1995) Glutamate oxidase enzyme electrodes: microsensors for neurotransmitter determination using electrochemically polymerized permselective films. J Electroanal Chem 388:143–149

    Google Scholar 

  90. Ryan MR, Lowry JP, O’Neill RD (1997) Biosensor for neurotransmitter L-glutamic acid designed for efficient use of L-glutamate oxidase and effective rejection of interference. Analyst 122:1419–1424

    PubMed  CAS  Google Scholar 

  91. Yao T, Suzuki S, Nakahara T, Nishino H (1998) Highly sensitive detection of L-glutamate by on-line amperometric micro-flow analysis based on enzymatic substrate recycling. Talanta 45:917–923

    PubMed  CAS  Google Scholar 

  92. O’Neill RD, Chang SC, Lowry JP, McNeil CJ (2004) Comparisons of platinum, gold, palladium and glassy carbon as electrode materials in the design of biosensors for glutamate. Biosens Bioelectron 19:1521–1528

    PubMed  Google Scholar 

  93. McMahon CP, Rocchitta G, Serra PA, Kirwan SM, Lowry JP, O’Neill RD (2006) Control of the oxygen dependence of an implantable polymer/enzyme composite biosensor for glutamate. Anal Chem 78:2352–2359

    PubMed  CAS  Google Scholar 

  94. Govindarajan S, McNeil CJ (2009) Decreasing the polymerization potential improves the selectivity of PPD-coated disc biosensors for glutamate. Anal Lett 42:739–745

    CAS  Google Scholar 

  95. Rothwell SA, Kinsella ME, Zain ZM, Serra PA, Rocchitta G, Lowry JP, O’Neill RD (2009) Contributions by a novel edge effect to the permselectivity of an electrosynthesized polymer for microbiosensor applications. Anal Chem 81:3911–3918

    PubMed  CAS  Google Scholar 

  96. Salazar P, Martin M, Roche R, Gonzalez-Mora JL, O’Neill RD (2010) Glutamate biosensor based on Prussian Blue modified carbon fiber microelectrodes for in-vivo neurochemical monitoring. In: Westerink B, Clinckers R, Smolders I, Sarre S, Michotte Y (eds) Monitoring molecules in neuroscience. Vrije Universiteit Brussel, Brussels, pp 292–294

    Google Scholar 

  97. Yao T, Suzuki S, Nishino H, Nakahara T (1996) On-line amperometric assay of glucose, L-glutamate, and acetylcholine using microdialysis probes and immobilized enzyme reactors. Electroanalysis 7:1114–1117

    Google Scholar 

  98. Zain ZM, O’Neill RD, Lowry JP, Pierce KW, Tricklebank M, Dewa A, Ab Ghani S (2010) Development of an implantable D-serine biosensor for in vivo monitoring using mammalian D-amino acid oxidase on a poly(o-phenylenediamine) and Nafion-modified platinum–iridium disk electrode. Biosens Bioelectron 25:1454–1459

    PubMed  CAS  Google Scholar 

  99. O’Brien KB, Killoran SJ, O’Neill RD, Lowry JP (2006) Development of a catalase based biosensor for the detection of endogenous hydrogen peroxide in brain extracellular fluid. In: Di Chiara G, Carboni E, Valentini V, Acquas E, Bassareo V, Cadoni C (eds) Monitoring molecules in neuroscience. University of Cagliari, Cagliari, pp 325–327

    Google Scholar 

  100. McMahon CP, Rocchitta G, Serra PA, Kirwan SM, Lowry JP, O’Neill RD (2006) The efficiency of immobilised glutamate oxidase decreases with surface enzyme loading: an electrostatic effect, and reversal by a polycation significantly enhances biosensor sensitivity. Analyst 131:68–72

    PubMed  CAS  Google Scholar 

  101. Myler S, Eaton S, Higson SPJ (1997) Poly(o-phenylenediamine) ultra-thin polymer-film composite membranes for enzyme electrodes. Anal Chim Acta 357:55–61

    CAS  Google Scholar 

  102. Ohnuki Y, Matsuda H, Ohsaka T, Oyama N (1983) Permselectivity of films prepared by electrochemical oxidation of phenol and amino-aromatic compounds. J Electroanal Chem 158:55–67

    CAS  Google Scholar 

  103. Craig JD, O’Neill RD (2003) Comparison of simple aromatic amines for electrosynthesis of permselective polymers in biosensor fabrication. Analyst 128:905–911

    CAS  Google Scholar 

  104. Dai YQ, Zhou DM, Shiu KK (2006) Permeability and permselectivity of polyphenylenediamine films synthesized at a palladium disk electrode. Electrochim Acta 52:297–303

    CAS  Google Scholar 

  105. Hamdi N, Wang JJ, Monbouquette HG (2005) Polymer films as permselective coatings for H2O2-sensing electrodes. J Electroanal Chem 581:258–264

    CAS  Google Scholar 

  106. Mitchell KM (2004) Acetylcholine and choline amperometric enzyme sensors characterized in vitro and in vivo. Anal Chem 76:1098–1106

    PubMed  CAS  Google Scholar 

  107. Wang J, Chen L, Luo DB (1997) Electrocatalytic detection of hydrogen peroxide at a poly(m-phenylenediamine)-modified carbon paste electrode and its use for biosensing of glucose. Anal Commun 34:217–219

    CAS  Google Scholar 

  108. Rhemrev-Boom MM, Jonker MA, Venema K, Jobst G, Tiessen R, Korf J (2001) On-line continuous monitoring of glucose or lactate by ultraslow microdialysis combined with a flow-through nanoliter biosensor based on poly(m-phenylenediamine) ultra-thin polymer membrane as enzyme electrode. Analyst 126:1073–1079

    PubMed  CAS  Google Scholar 

  109. Yang QL, Atanasov P, Wilkins E (1999) Needle-type lactate biosensor. Biosens Bioelectron 14:203–210

    PubMed  CAS  Google Scholar 

  110. Yang QL, Atanasov P, Wilkins E (1997) A novel amperometric transducer design for needle-type implantable biosensor applications. Electroanalysis 9:1252–1256

    CAS  Google Scholar 

  111. Netchiporouk LI, Shram NF, Jaffrezic-Renault N, Martelet C, Cespuglio R (1996) In vivo brain glucose measurements: differential normal pulse voltammetry with enzyme-modified carbon fiber microelectrodes. Anal Chem 68:4358–4364

    PubMed  CAS  Google Scholar 

  112. Lowry JP, O’Neill RD (1994) Partial characterization in vitro of glucose oxidase-modified poly(phenylenediamine)-coated electrodes for neurochemical analysis in vivo. Electroanalysis 6:369–379

    CAS  Google Scholar 

  113. Ekinci E, Ogunc ST, Karagozler AE (1998) Electrochemical poly(1,3-phenylenediamine) synthesis as enzyme immobilization media. J Appl Polym Sci 68:145–152

    CAS  Google Scholar 

  114. Soldatkin OO, Schuvailo OM, Marinesco S, Cespuglio R, Soldatkin AR (2009) Microbiosensor based on glucose oxidase and hexokinase co-immobilised on platinum microelectrode for selective ATP detection. Talanta 78:1023–1028

    PubMed  CAS  Google Scholar 

  115. Li XG, Huang MR, Duan W, Yang YL (2002) Novel multifunctional polymers from aromatic diamines by oxidative polymerisations. Chem Rev 102:2925–3030

    PubMed  CAS  Google Scholar 

  116. Zhou DM, Dai YQ, Shiu KK (2010) Poly(phenylenediamine) film for the construction of glucose biosensors based on platinized glassy carbon electrode. J Appl Electrochem 40:1997–2003

    CAS  Google Scholar 

  117. McMahon CP, Killoran SJ, Kirwan SM, O’Neill RD (2004) The selectivity of electrosynthesised polymer membranes depends on the electrode dimensions: implications for biosensor applications. J Chem Soc Chem Commun: 2128–30

    Google Scholar 

  118. Killoran SJ, O’Neill RD (2008) Characterization of permselective coatings electrosynthesized on Pt–Ir from the three phenylenediamine isomers for biosensor applications. Electrochim Acta 53:7303–7312

    CAS  Google Scholar 

  119. Dixon BM, Lowry JP, O’Neill RD (2002) Characterization in vitro and in vivo of the oxygen dependence of an enzyme/polymer biosensor for monitoring brain glucose. J Neurosci Methods 119:135–142

    PubMed  CAS  Google Scholar 

  120. Lowry JP, Miele M, O’Neill RD, Boutelle MG, Fillenz M (1998) An amperometric glucose-oxidase/poly(o-phenylenediamine) biosensor for monitoring brain extracellular glucose: in vivo characterisation in the striatum of freely-moving rats. J Neurosci Methods 79:65–74

    PubMed  CAS  Google Scholar 

  121. Oldenziel WH, van der Zeyden M, Dijkstra G, Ghijsen WEJM, Karst H, Cremers TIFH, Westerink BHC (2007) Monitoring extracellular glutamate in hippocampal slices with a microsensor. J Neurosci Methods 160:37–44

    PubMed  CAS  Google Scholar 

  122. Baronas R, Ivanauskas F, Ivanauskas F, Kulys J (2004) The effect of diffusion limitations on the response of amperometric biosensors with substrate cyclic conversion. J Math Chem 35:199–213

    CAS  Google Scholar 

  123. Bernhardt PV (2006) Enzyme electrochemistry—biocatalysis on an electrode. Aust J Chem 59:233–256

    CAS  Google Scholar 

  124. Gooding JJ, Hall EAH, Hibbert DB (1998) From thick films to monolayer recognition layers in amperometric enzyme electrodes. Electroanalysis 10:1130–1136

    CAS  Google Scholar 

  125. Cooper JM, Pritchard DJ (1994) Biomolecular sensors for neurotransmitter determination—electrochemical immobilization of glutamate oxidase at microelectrodes in a poly(o-phenylenediamine) film. J Mater Sci Mater Electron 5:111–116

    CAS  Google Scholar 

  126. Gooding JJ, Hall EAH (1996) Parameters in the design of oxygen detecting oxidase enzyme electrodes. Electroanalysis 8:407–413

    CAS  Google Scholar 

  127. Leypoldt JK, Gough DA (1984) Model of a two-substrate enzyme electrode for glucose. Anal Chem 56:2896–2904

    PubMed  CAS  Google Scholar 

  128. Goodsell DS (2006) Glucose oxidase: molecule of the month. RCSB Protein Data Bank. http://www.pdb.org

  129. Arima J, Sasaki C, Sakaguchi C, Mizuno H, Tamura T, Kashima A, Kusakabe H, Sugio S, Inagaki K (2009) Structural characterization of L-glutamate oxidase from Streptomyces sp X-119-6. FEBS J 276:3894–3903

    PubMed  CAS  Google Scholar 

  130. Compagnone D, Federici G, Bannister JV (1996) A new conducting polymer glucose sensor based on polythianaphthene. Electroanalysis 7:1151–1155

    Google Scholar 

  131. Zhang YN, Wilson GS (1993) In vitro and in vivo evaluation of oxygen effects on a glucose oxidase based implantable glucose sensor. Anal Chim Acta 281:513–520

    CAS  Google Scholar 

  132. Siesjo BK (1978) Brain energy metabolism. Wiley, Chichester

    Google Scholar 

  133. Nair PK, Buerk DG, Halsey JH Jr (1987) Comparison of oxygen metabolism and tissue pO2 in cortex and hippocampus. Stroke 18:616–622

    PubMed  CAS  Google Scholar 

  134. Murr R, Berger S, Schuerer L, Peter K, Baethmann A (1994) A novel, remote-controlled suspension device for brain tissue PO2 measurements with multiwire surface electrodes. Pflugers Arch 426:348–350

    PubMed  CAS  Google Scholar 

  135. Clark LC Jr, Misrahy G, Fox RP (1958) Chronically implanted polarographic electrodes. J Appl Physiol 13:85–91

    PubMed  CAS  Google Scholar 

  136. Bazzu G, Puggioni GM, Dedola S, Calia G, Rocchitta G, Migheli R, Desole MS, Lowry JP, O’Neill RD, Serra PA (2009) Real-time monitoring of brain tissue oxygen using a miniaturized biotelemetric device implanted in freely-moving rats. Anal Chem 81:2235–2241

    PubMed  CAS  Google Scholar 

  137. Wang J, Lu F (1998) Oxygen-rich oxidase enzyme electrodes for operation in oxygen-free solutions. J Am Chem Soc 120:1048–1050

    CAS  Google Scholar 

  138. Moussy F, Jakeway S, Harrison DJ, Rajotte RV (1994) In vitro and in vivo performance and lifetime of perfluorinated ionomer-coated glucose sensors after high-temperature curing. Anal Chem 66:3882–3888

    PubMed  CAS  Google Scholar 

  139. Eyre JA, Stuart AG, Forsyth RJ, Heaviside D, Bartlett K (1994) Glucose export from the brain in man: evidence for a role for astrocytic glycogen as a reservoir of glucose for neural metabolism. Brain Res 635:349–352

    PubMed  CAS  Google Scholar 

  140. Hofer RE, Lanier WL (1991) The effects of insulin infusion on plasma and brain glucose in hyperglycemic diabetic rats: a comparison with placebo-treated diabetic and nondiabetic rats. Anesthesiology 75:673–678

    PubMed  CAS  Google Scholar 

  141. Lowry JP, Fillenz M (2001) Real-time monitoring of brain energy metabolism in vivo using microelectrochemical sensors: the effects of anesthesia. Bioelectrochemistry 54:39–47

    PubMed  CAS  Google Scholar 

  142. Berners MOM, Boutelle MG, Fillenz M (1994) On-line measurement of brain glutamate with an enzyme/polymer-coated tubular electrode. Anal Chem 66:2017–2021

    PubMed  CAS  Google Scholar 

  143. Kirwan SM, Rocchitta G, McMahon CP, Craig JD, Killoran SJ, O’Brien KB, Serra PA, Lowry JP, O’Neill RD (2007) Modifications of poly(o-phenylenediamine) permselective layer on Pt–Ir for biosensor application in neurochemical monitoring. Sensors 7:420–437

    CAS  Google Scholar 

  144. Zhang Y, Wilson GS (1993) Electrochemical oxidation of H2O2 on Pt and Pt + Ir electrodes in physiological buffer and its applicability to H2O2-based biosensors. J Electroanal Chem 345:253–271

    CAS  Google Scholar 

  145. Lingane JJ, Lingane PJ (1963) Chronopotentiometry of hydrogen peroxide with a platinum wire electrode. J Electroanal Chem 5:411–419

    CAS  Google Scholar 

  146. Ikeda T, Schmehl R, Denisevich P, Willman K, Murray RW (1982) Permeation of electroactive solutes through ultrathin polymeric films on electrode surfaces. J Am Chem Soc 104:2683–2691

    CAS  Google Scholar 

  147. Saveant JM (1991) Permeation through polymer coatings on electrodes: membrane versus pinhole permeation. J Electroanal Chem 302:91–101

    CAS  Google Scholar 

  148. Pyati R, Murray RW (1994) Permeability and partitioning of ferrocene ethylene oxide and propylene oxide oligomers into electropolymerized films from acetonitrile and polyether solutions. J Phys Chem 98:11129–11135

    CAS  Google Scholar 

  149. Centonze D, Malitesta C, Palmisano F, Zambonin PG (1994) Permeation of solutes through an electropolymerized ultrathin poly-o-phenylenediamine film used as an enzyme-entrapping membrane. Electroanalysis 6:423–429

    Google Scholar 

  150. Murphy LJ (1998) Reduction of interference response at a hydrogen peroxide detecting electrode using electropolymerized films of substituted naphthalenes. Anal Chem 70:2928–2935

    CAS  Google Scholar 

  151. Craig JD, O’Neill RD (2003) Electrosynthesis and permselective characterisation of phenol-based polymers for biosensor applications. Anal Chim Acta 495:33–43

    CAS  Google Scholar 

  152. Rothwell SA, McMahon CP, O’Neill RD (2010) Effects of polymerization potential on the permselectivity of poly(o-phenylenediamine) coatings deposited on Pt–Ir electrodes for biosensor applications. Electrochim Acta 55:1051–1060

    CAS  Google Scholar 

  153. Dai YQ, Shiu KK (2004) Highly sensitive amperometric glucose biosensor based on glassy carbon electrode with copper/palladium coating. Electroanalysis 16:1806–1813

    CAS  Google Scholar 

  154. Carelli I, Chiarotto I, Curulli A, Palleschi G (1996) Electropolymerization of hydroxybenzene and aminobenzene isomers on platinum electrodes to assemble interference-free electrochemical biosensors. Electrochim Acta 41:1793–1800

    CAS  Google Scholar 

  155. Fu YC, Chen C, Xie QJ, Xu XH, Zou C, Zhou QM, Tan L, Tang H, Zhang YY, Yao SZ (2008) Immobilization of enzymes through one-pot chemical preoxidation and electropolymerization of dithiols in enzyme-containing aqueous suspensions to develop biosensors with improved performance. Anal Chem 80:5829–5838

    PubMed  CAS  Google Scholar 

  156. Miele M, Fillenz M (1996) In vivo determination of extracellular brain ascorbate. J Neurosci Methods 70:15–19

    PubMed  CAS  Google Scholar 

  157. De Simoni MG, De Luigi A, Imeri L, Algeri S (1989) An optoelectronic transmission system for telemetry of in vivo voltammetric signals. J Neurosci Methods 29:304

    Google Scholar 

  158. Kagohashi M, Nakazato T, Yoshimi K, Moizumi S, Hattori N, Kitazawa S (2008) Wireless voltammetry recording in unanesthetised behaving rats. Neurosci Res 60:120–127

    PubMed  Google Scholar 

  159. Rocchitta G, Migheli R, Dedola S, Calia G, Desole MS, Miele E, Lowry JP, O’Neill RD, Serra PA (2007) Development of a distributed, fully automated, bidirectional telemetry system for amperometric microsensor and biosensor applications. Sens Actuators B 126:700–709

    Google Scholar 

  160. Parkin MC, Hopwood SE, Strong AJ, Boutelle MG (2003) Resolving dynamic changes in brain metabolism using biosensors and on-line microdialysis. Trends Anal Chem 22:487–497

    CAS  Google Scholar 

  161. Belluzo MS, Ribone ME, Lagier CM (2008) Assembling amperometric biosensors for clinical diagnostics. Sensors 8:1366–1399

    CAS  Google Scholar 

  162. Kudo H, Yagi T, Chu MX, Saito H, Morimoto N, Iwasaki Y, Akiyoshi K, Mitsubayashi K (2008) Glucose sensor using a phospholipid polymer-based enzyme immobilization method. Anal Bioanal Chem 391:1269–1274

    PubMed  CAS  Google Scholar 

  163. Nikolaus N, Strehlitz B (2008) Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing. Microchim Acta 160:15–55

    CAS  Google Scholar 

  164. Georganopoulou DG, Carley R, Jones DA, Boutelle MG (2000) Development and comparison of biosensors for in-vivo applications. Faraday Discuss 116:291–303

    PubMed  CAS  Google Scholar 

  165. Albery WJ, Boutelle MG, Galley PT (1992) The dialysis electrode—a new method for invivo monitoring. J Chem Soc Chem Commun 12:900–901

    Google Scholar 

  166. Shimura T, Karadi Z, Yamamoto T (1997) Facilitation of glutamate release in the ventromedial division of the globus pallidus during palatable taste stimulation in freely moving rats: Real-time measurement. Neurosci Res 28:281–284

    PubMed  CAS  Google Scholar 

  167. Zhang MN, Mao LQ (2005) Enzyme-based amperometric biosensors for continuous and on-line monitoring of cerebral extracellular microdialysate. Front Biosci 10:345–352

    PubMed  CAS  Google Scholar 

  168. Lin YQ, Zhu NN, Yu P, Su L, Mao LQ (2009) Physiologically relevant online electrochemical method for continuous and simultaneous monitoring of striatum glucose and lactate following global cerebral ischemia/reperfusion. Anal Chem 81:2067–2074

    PubMed  CAS  Google Scholar 

  169. Mannino S, Brenna O, Buratti S, Cosio MS (1997) Microdialysis-bioreactor for on-line monitoring of glucose in food samples. Electroanalysis 9:1337–1340

    CAS  Google Scholar 

  170. John R, John MJ (1998) Evaluation of the microdialysis electrode concept as a generic biosensing technology. Electroanalysis 10:1125–1129

    CAS  Google Scholar 

  171. Lee GJ, Choi SK, Eo YH, Lim JE, Han JH, Choi S, Park JH, Son DH, Hong S, Oh BS, Park HK (2009) Comparison study between dialysis electrode and CNT probe for neurotransmitter monitoring. Biochip J 3:82–86

    Google Scholar 

  172. Murphy LJ, Galley PT (1994) Measurement in vitro of human plasma glycerol with a hydrogen peroxide detecting microdialysis enzyme electrode. Anal Chem 66:4345–4353

    PubMed  CAS  Google Scholar 

  173. Zilkha E, Obrenovitch TP, Koshy A, Kusakabe H, Bennetto HP (1995) Extracellular glutamate: on-line monitoring using microdialysis coupled to enzyme-amperometric analysis. J Neurosci Methods 60:1–9

    PubMed  CAS  Google Scholar 

  174. Asai S, Iribe Y, Kohno T, Ishikawa K (1996) Real time monitoring of biphasic glutamate release using dialysis electrode in rat acute brain ischemia. Neuroreport 7:1092–1096

    PubMed  CAS  Google Scholar 

  175. Yao T, Yano T, Nishino H (2004) Simultaneous in vivo monitoring of glucose, L-lactate, and pyruvate concentrations in rat brain by a flow-injection biosensor system with an on-line microdialysis sampling. Anal Chim Acta 510:53–59

    CAS  Google Scholar 

  176. Fumero B, Guadalupe T, Valladares F, Mora F, O’Neill RD, Mas M, Gonzalez-Mora JL (1994) Fixed versus removable microdialysis probes for in vivo neurochemical analysis: implications for behavioral studies. J Neurochem 63:1407–1415

    PubMed  CAS  Google Scholar 

  177. Dungel P, Long N, Yu B, Moussy Y, Moussy F (2008) Study of the effects of tissue reactions on the function of implanted glucose sensors. J Biomed Mater Res A 85A:699–706

    CAS  Google Scholar 

  178. Mitala CM, Wang YX, Borland LM, Jung M, Shand S, Watkins S, Weber SG, Michael AC (2008) Impact of microdialysis probes on vasculature and dopamine in the rat striatum: a combined fluorescence and voltammetric study. J Neurosci Methods 174:177–185

    PubMed  CAS  Google Scholar 

  179. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953

    PubMed  CAS  Google Scholar 

  180. Hascup ER, AfBjerken S, Hascup KN, Pomerleau F, Huettl P, Stromberg I, Gerhardt GA (2009) Histological studies of the effects of chronic implantation of ceramic-based microelectrode arrays and microdialysis probes in rat prefrontal cortex. Brain Res 1291:12–20

    PubMed  CAS  Google Scholar 

  181. Polikov VS, Su EC, Ball MA, Hong JS, Reichert WM (2009) Control protocol for robust in vitro glial scar formation around microwires: essential roles of bFGF and serum in gliosis. J Neurosci Methods 181:170–177

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from Science Foundation Ireland (SFI), the Irish Research Council for Science, Engineering and Technology (IRCSET), and by University College Dublin (UCD).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

O’Neill, R.D. (2013). Characterization of Polymer–Enzyme Composite Biosensors for Brain Monitoring In Vivo. In: Marinesco, S., Dale, N. (eds) Microelectrode Biosensors. Neuromethods, vol 80. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-370-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-370-1_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-369-5

  • Online ISBN: 978-1-62703-370-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics