Skip to main content

Recent Advancements in Conducting Polymers for Biomedical Sensors

  • Chapter
  • First Online:
NanoCarbon: A Wonder Material for Energy Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 107 Accesses

Abstract

The healthcare system heavily relies on quantitative analyses of samples, including blood work, laboratory tests, vitals, imaging, health risk assessments, and health records. However, trends in point-of-care diagnostics and accurate, real-time monitoring of patient’s physiological parameters must meet demands to cut healthcare expenditures, optimize treatment efficiency, and ameliorate patient outcomes. One revolutionary solution in biomedical technology and diagnostic bio-instrumentation is the biomedical sensor, an analytical device capable of transducing biological signals into electrical signals to detect and quantify chemical substances or biological molecules with robust sensitivity. Conducting polymers (CPs) are a pivotal advancement in biosensor design due to their biocompatibility, inherent and tunable electroactivity, selectivity, and inexpensive synthesis. CP-based biosensors pave the way for minimally invasive, continuous patient monitoring, wearable, flexible, and implantable applications, personalized diagnoses, point-of-care treatments, early disease interventions, and affordable devices for underserved populations. This comprehensive review will cover different types, and characterization of conducting polymers commonly used in biosensors, followed by an introduction to types of biosensors, the requirements and challenges of biomedical sensor design, and recent advancements in the field, the lattermost focusing on the benefits of employing conducting polymers. Finally, CP-based biosensors for pathogen, DNA, protein, and early disease detection are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiriyachaiporn, N., Leelawattanachai, J., Muangnapoh, K., Bamrungsap, S., Maneeprakorn, W., Japrung, D.: Chapter 25—Biomedical sensor, In: Lau, W.J., Faungnawakij, K., Piyachomkwan, K., U.R.B.T.-H. of Ruktanonchai N.A. (eds.) Micro Nano Technol., pp. 657–681. Elsevier (2021)

    Google Scholar 

  2. Wan, H., Zhuang, L., Pan, Y., Gao, F., Tu, J., Zhang, B., Wang, P.: Biomedical Sensors, Elsevier Inc. (2019)

    Google Scholar 

  3. Van Tran, V., Tran, N.H.T., Hwang, H.S., Chang, M.: Development strategies of conducting polymer-based electrochemical biosensors for virus biomarkers: Potential for rapid COVID-19 detection. Biosens. Bioelectron. 182, 113192 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang, A., Yan, F.: Flexible electrochemical biosensors for health monitoring. ACS Appl. Electron. Mater. 3, 53–67 (2021)

    Article  CAS  Google Scholar 

  5. Gamboa, J., Paulo-Mirasol, S., Estrany, F., Torras, J.: Recent progress in biomedical sensors based on conducting polymer hydrogels. ACS Appl. Bio Mater. 6, 1720–1741 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Srichan, C., Srichan, W., Danvirutai, P., Ritsongmuang, C., Sharma, A., Anutrakulchai, S.: Non-invasively accuracy enhanced blood glucose sensor using shallow dense neural networks with NIR monitoring and medical features. Sci. Rep. 12, 1–9 (2022)

    Article  Google Scholar 

  7. Rohaizad, N., Mayorga-Martinez, C.C., Fojtů, M., Latiff, N.M., Pumera, M.: Two-dimensional materials in biomedical, biosensing and sensing applications. Chem. Soc. Rev. 50, 619–657 (2021)

    Article  CAS  PubMed  Google Scholar 

  8. Eliaz, N.: Corrosion of metallic biomaterials: A review. Materials (Basel) 12 (2019)

    Google Scholar 

  9. Ates, M.: A review study of (bio)sensor systems based on conducting polymers. Mater. Sci. Eng. C 33, 1853–1859 (2013)

    Article  CAS  Google Scholar 

  10. El-Said, W.A., Abdelshakour, M., Choi, J.H., Choi, J.W.: Application of conducting polymer nanostructures to electrochemical biosensors. Molecules 25, 1–11 (2020)

    Article  Google Scholar 

  11. Kenry, B.: Liu, recent advances in biodegradable conducting polymers and their biomedical applications. Biomacromol 19, 1783–1803 (2018)

    Article  CAS  Google Scholar 

  12. Almeida, L.C.P.: Conducting polymers: Synthesis, properties and applications, Conduct. Polym. Synth. Prop. Appl., 1–358 (2013)

    Google Scholar 

  13. Yi, N., Abidian, M.R.: Conducting polymers and their biomedical applications (2016)

    Google Scholar 

  14. Namsheer, K., Rout, C.S.: Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 11, 5659–5697 (2021)

    Article  Google Scholar 

  15. Poddar, A.K., Patel, S.S., Patel, H.D.: Synthesis, characterization and applications of conductive polymers: A brief review. Polym. Adv. Technol. 32, 4616–4641 (2021)

    Article  CAS  Google Scholar 

  16. Le, T.H., Kim, Y., Yoon, H.: Electrical and electrochemical properties of conducting polymers. Polymers (Basel). 9, 150 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Assad, H., Sharma, S., Kaya, S., Sharma, P.K., Kumar, A.: Overview and fundamentals of polymer nanocomposites. In: Nanocomposites-Adv. Mater. Energy Environ. Asp., pp. 41–66. Elsevier (2023)

    Google Scholar 

  18. Kumar, S.: Conducting polymers and their characterization. Int. Res. J. Eng. Technol. 3, 479–482 (2016)

    Google Scholar 

  19. Zhou, G., Wang, Y., Cui, L.: Biomedical sensor, device and measurement systems. Adv. Bioeng. (2015)

    Google Scholar 

  20. Gray, M., Meehan, J., Ward, C., Langdon, S.P., Kunkler, I.H., Murray, A., Argyle, D.: Implantable biosensors and their contribution to the future of precision medicine. Vet. J. 239, 21–29 (2018)

    Article  CAS  PubMed  Google Scholar 

  21. Comini, E.: Achievements and challenges in sensor devices. Front. Sensors 1, 607063 (2021)

    Article  Google Scholar 

  22. Javaid, M., Khan, I.H.: Internet of Things (IoT) enabled healthcare helps to take the challenges of COVID-19 Pandemic. J. Oral Biol. Craniofacial Res. 11, 209–214 (2021)

    Article  Google Scholar 

  23. Mečņika, V., Hoerr, M., Krieviņš, I., Schwarz, A.: Smart textiles for healthcare: Applications and technologies. Rural Environ. Educ. Personal. 7, 150–161 (2014)

    Google Scholar 

  24. Cherenack, K., Van Pieterson, L.: Smart textiles: Challenges and opportunities. J. Appl. Phys. 112 (2012)

    Google Scholar 

  25. Chan, M., Estève, D., Fourniols, J.Y., Escriba, C., Campo, E.: Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 56, 137–156 (2012)

    Article  PubMed  Google Scholar 

  26. Li, G., Liu, Z., Gao, W., Tang, B.: Recent advancement in graphene quantum dots based fluorescent sensor: Design, construction and bio-medical applications. Coord. Chem. Rev. 478, 214966 (2023)

    Article  CAS  Google Scholar 

  27. Nambiar, S., Yeow, J.T.W.: Conductive polymer-based sensors for biomedical applications. Biosens. Bioelectron. 26, 1825–1832 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. Runsewe, D., Betancourt, T., Irvin, J.A.: Biomedical application of electroactive polymers in electrochemical sensors: A review. Materials (Basel) 12 (2019)

    Google Scholar 

  29. Vidic, J., Manzano, M.: Electrochemical biosensors for rapid pathogen detection. Curr. Opin. Electrochem. 29, 100750 (2021)

    Article  CAS  Google Scholar 

  30. Cesewski, E., Johnson, B.N.: Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 159, 112214 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Travas-Sejdic, J., Aydemir, N., Kannan, B., Williams, D.E., Malmström, J.: Intrinsically conducting polymer nanowires for biosensing. J. Mater. Chem. B. 2, 4593–4609 (2014)

    Article  CAS  PubMed  Google Scholar 

  32. Aravinda, C.L., Cosnier, S., Chen, W., Myung, N.V., Mulchandani, A.: Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor. Biosens. Bioelectron. 24, 1451–1455 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. Magar, H.S., Hassan, R.Y.A., Mulchandani, A.: Electrochemical impedance spectroscopy (Eis): Principles, construction, and biosensing applications. Sensors 21 (2021)

    Google Scholar 

  34. Wang, R., Wang, L., Yan, J., Luan, D., Tao sun, Wu, J., Bian, X.: Rapid, sensitive and label-free detection of pathogenic bacteria using a bacteria-imprinted conducting polymer film-based electrochemical sensor, Talanta 226 122135 (2021)

    Google Scholar 

  35. Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C.: Conducting polymer based DNA biosensor for the detection of the Bacillus cereus group species. Sens. Agric. Food Qual. Saf. 7315, 731504 (2009)

    Google Scholar 

  36. Peng, H., Zhang, L., Soeller, C., Travas-Sejdic, J.: Conducting polymers for electrochemical DNA sensing. Biomaterials 30, 2132–2148 (2009)

    Article  CAS  PubMed  Google Scholar 

  37. Ramanavičius, A., Ramanavičiene, A., Malinauskas, A.: Electrochemical sensors based on conducting polymer-polypyrrole. Electrochim. Acta 51, 6025–6037 (2006)

    Article  Google Scholar 

  38. Kim, E.R., Joe, C., Mitchell, R.J., Gu, M.B.: Biosensors for healthcare: Current and future perspectives. Trends Biotechnol. (2022)

    Google Scholar 

  39. Valastyan, J.S., Lindquist, S.: Mechanisms of protein-folding diseases at a glance. DMM Dis. Model. Mech. 7, 9–14 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. Xu, M., Yadavalli, V.K.: Flexible biosensors for the impedimetric detection of protein targets using silk-conductive polymer biocomposites. ACS Sensors 4, 1040–1047 (2019)

    Article  CAS  PubMed  Google Scholar 

  41. Higgins, M.J., Molino, P.J., Yue, Z., Wallace, G.G.: Organic conducting polymer-protein interactions. Chem. Mater. 24, 828–839 (2012)

    Article  CAS  Google Scholar 

  42. Yoon, H., Kin, J.H., Lee, N., Kim, B.G., Jang, J.: A novel sensor platform based on aptamer-conjugated polypyrrole nanotubes for label-free electrochemical protein detection. ChemBioChem 9, 634–641 (2008)

    Article  CAS  PubMed  Google Scholar 

  43. Mulchandani, A., Myung, N.V.: Conducting polymer nanowires-based label-free biosensors. Curr. Opin. Biotechnol. 22, 502–508 (2011)

    Article  CAS  PubMed  Google Scholar 

  44. Califf, R.M.: Biomarker definitions and their applications. Exp. Biol. Med. 243, 213–221 (2018)

    Article  CAS  Google Scholar 

  45. Steele, L., Orefuwa, E., Dickmann, P.: Drivers of earlier infectious disease outbreak detection: a systematic literature review. Int. J. Infect. Dis. 53, 15–20 (2016)

    Article  PubMed  Google Scholar 

  46. Kumar, A., Gupta, G.H., Singh, G., More, N., Keerthana, M., Sharma, A., Jawade, D., Balu, A., Kapusetti, G.: Ultrahigh sensitive graphene oxide/conducting polymer composite based biosensor for cholesterol and bilirubin detection. Biosens. Bioelectron. X. 13, 100290 (2023)

    CAS  Google Scholar 

  47. Li, Y., Han, R., Chen, M., Yang, X., Zhan, Y., Wang, L., Luo, X.: Electrochemical biosensor with enhanced antifouling capability based on amyloid-like bovine serum albumin and a conducting polymer for ultrasensitive detection of proteins in human serum. Anal. Chem. 93, 14351–14357 (2021)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehra, A., Chaudhary, M., De Souza, F., Gupta, R.K. (2024). Recent Advancements in Conducting Polymers for Biomedical Sensors. In: Gupta, R.K. (eds) NanoCarbon: A Wonder Material for Energy Applications. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-9935-4_18

Download citation

Publish with us

Policies and ethics