Skip to main content

Tracking of Replicative Senescence in Mesenchymal Stem Cells by Colony-Forming Unit Frequency

  • Protocol
  • First Online:
Stem Cells and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 976))

Abstract

Long-term culture of mesenchymal stem cells (MSC) has major impact on cellular characteristics and differentiation potential. Numerous clinical trials raise high hopes in regenerative medicine and this necessitates reliable quality control of the cellular products—also with regard to replicative senescence. The maximum number of population doublings before entering the senescent state depends on the cell type, tissue of origin, culture medium as well as cell culture methods. Therefore, it would be valuable to predict the remaining proliferative potential in the course of culture expansion. Here, we describe a refined fibroblastic colony forming unit (CFU-f) assay which can be performed at any passage during culture expansion with simple cell culture techniques. This method is based on limiting dilutions in the 96-well format to determine the proportion of highly proliferative and clonogenic cells. The number of CFU-f declines rapidly during culture expansion. Especially at higher passages the CFU-f frequency correlates very well with the remaining cumulative population doublings. This approach can be used as quality measure to estimate the remaining proliferative potential of MSC in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  PubMed  CAS  Google Scholar 

  2. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol 7:14

    Article  PubMed  Google Scholar 

  3. Noer A, Boquest AC, Collas P (2007) Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence. BMC Cell Biol 8:18

    Article  PubMed  Google Scholar 

  4. Wagner W, Horn P, Castoldi M et al (2008) Replicative senescence of mesenchymal stem cells—a continuous and organized process. PLoS One 5:e2213

    Article  Google Scholar 

  5. Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R (2000) Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp Hematol 28:707–715

    Article  PubMed  CAS  Google Scholar 

  6. Schellenberg A, Lin Q, Schueler H et al (2011) Replicative senescence of mesenchymal stem cells causes DNA-methylation changes which correlate with repressive histone marks. Aging (Albany NY) 3:873–888

    CAS  Google Scholar 

  7. Walenda T, Bork S, Horn P et al (2010) Co-culture with mesenchymal stromal cells increases proliferation and maintenance of hematopoietic progenitor cells. J Cell Mol Med 14:337–350

    Article  PubMed  CAS  Google Scholar 

  8. Campioni D, Rizzo R, Stignani M et al (2009) A decreased positivity for CD90 on human mesenchymal stromal cells (MSCs) is associated with a loss of immunosuppressive activity by MSCs. Cytometry B Clin Cytom 76:225–230

    PubMed  Google Scholar 

  9. Liang H, Hou H, Yi W et al (2011) Increased expression of pigment epithelium-derived factor in aged mesenchymal stem cells impairs their therapeutic efficacy for attenuating myocardial infarction injury. [Epub ahead of print]

    Google Scholar 

  10. Wagner W, Ho AD, Zenke M (2010) Different facets of aging in human mesenchymal stem cells. Tissue Eng Part B Rev 16:445–453

    Article  PubMed  Google Scholar 

  11. Wagner W, Bork S, Lepperdinger G et al (2010) How to track cellular aging of mesenchymal stromal cells. Aging (Albany NY) 2:224–230

    CAS  Google Scholar 

  12. Allsopp RC, Vaziri H, Patterson C et al (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89:10114–10118

    Article  PubMed  CAS  Google Scholar 

  13. Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22:675–682

    Article  PubMed  CAS  Google Scholar 

  14. Fehrer C, Voglauer R, Wieser M et al (2006) Techniques in gerontology: cell lines as standards for telomere length and telomerase activity assessment. Exp Gerontol 41:648–651

    Article  PubMed  CAS  Google Scholar 

  15. Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  PubMed  CAS  Google Scholar 

  16. Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113(Pt 20):3613–3622

    PubMed  CAS  Google Scholar 

  17. Zhou S, Greenberger JS, Epperly MW et al (2008) Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7:335–343

    Article  PubMed  CAS  Google Scholar 

  18. Izadpanah R, Kaushal D, Kriedt C et al (2008) Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Res 68:4229–4238

    Article  PubMed  CAS  Google Scholar 

  19. Schallmoser K, Bartmann C, Rohde E et al (2010) Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica 95:867–874

    Article  PubMed  CAS  Google Scholar 

  20. Bork S, Pfister S, Witt H et al (2010) DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell 9:54–63

    Article  PubMed  CAS  Google Scholar 

  21. Koch CM, Joussen S, Schellenberg A, Lin Q, Zenke M, Wagner W (2012) Monitoring of Cellular Senescence by DNA-Methylation at Specific CpG sites. Aging Cell 11:366–369

    Article  PubMed  CAS  Google Scholar 

  22. DiGirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107:275–281

    Article  PubMed  CAS  Google Scholar 

  23. Schellenberg A, Stiehl T, Horn P et al (2012) Population dynamics of mesenchymal stromal cells during culture expansion. Cytotherapy 14(4):401–411

    Article  PubMed  CAS  Google Scholar 

  24. Friedenstein AJ, Deriglasova UF, Kulagina NN et al (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2:83–92

    PubMed  CAS  Google Scholar 

  25. Wagner W (2010) Senescence is heterogeneous in mesenchymal stromal cells—­kaleidoscopes for cellular aging. Cell Cycle 9: 2923–2924

    Article  PubMed  CAS  Google Scholar 

  26. Schallmoser K, Rohde E, Bartmann C, Obenauf AC, Reinisch A, Strunk D (2009) Platelet-derived growth factors for GMP-compliant propagation of mesenchymal stromal cells. Biomed Mater Eng 19:271–276

    PubMed  Google Scholar 

  27. Cholewa D, Stiehl T, Schellenberg A et al (2011) Expansion of adipose mesenchymal stromal cells is affected by human platelet lysate and plating density. Cell Transplant 20(9):1409–1422

    Article  PubMed  Google Scholar 

  28. Staszewski R (1990) Murphy’s law of limiting dilution cloning revisited. Stat Med 9:1541

    Article  PubMed  CAS  Google Scholar 

  29. Underwood PA, Bean PA (1988) Hazards of the limiting-dilution method of cloning hybridomas. J Immunol Methods 107: 119–128

    Article  PubMed  CAS  Google Scholar 

  30. Chamberlain JR, Schwarze U, Wang PR et al (2004) Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 303:1198–1201

    Article  PubMed  CAS  Google Scholar 

  31. Lietzke R, Unsicker K (1985) A statistical approach to determine monoclonality after limiting cell plating of a hybridoma clone. J Immunol Methods 76:223–228

    Article  PubMed  CAS  Google Scholar 

  32. Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y (1991) Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 266:17707–17712

    PubMed  CAS  Google Scholar 

  33. Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806

    Article  PubMed  CAS  Google Scholar 

  34. Walenda G, Hemeda H, Schneider RK, Merkel R, Hoffmann B, Wagner W (2012) Human platelet lysate gel provides a novel three dimensional-matrix for enhanced culture expansion of mesenchymal stromal cells. Tissue Eng Part C Methods 18:924–934

    Article  PubMed  CAS  Google Scholar 

  35. Brandl A, Meyer M, Bechmann V, Nerlich M, Angele P (2011) Oxidative stress induces senescence in human mesenchymal stem cells. Exp Cell Res 317:1541–1547

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the excellence initiative of the German federal and state governments within the START-Program of the Faculty of Medicine, RWTH Aachen, by the Stem Cell Network North Rhine Westphalia, and by the Else-Kröner Fresenius Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schellenberg, A., Hemeda, H., Wagner, W. (2013). Tracking of Replicative Senescence in Mesenchymal Stem Cells by Colony-Forming Unit Frequency. In: Turksen, K. (eds) Stem Cells and Aging. Methods in Molecular Biology, vol 976. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-317-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-317-6_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-316-9

  • Online ISBN: 978-1-62703-317-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics