Skip to main content

Micropropagation and Maintenance of Phytoplasmas in Tissue Culture

  • Protocol
  • First Online:
Phytoplasma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 938))

Abstract

Maintenance of phytoplasma strains in tissue culture is achievable for all strains transmitted to periwinkle (Catharanthus roseus), and also for other naturally infected plant host species. Shoots of 1–3 cm length are grown in a solid medium containing Murashige and Skoog (MS) micro- and macroelements and 0.12 mg/L benzylaminopurine. The continued presence of phytoplasmas in infected shoots of periwinkle that have been maintained in micropropagation for up to 20 years can be shown by diagnostic methods such as nested PCR tests using the 16S rDNA gene (see Chapters 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,and 26 for phytoplasma diagnostic methods).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Botti S, Bertaccini A (2003) Variability and functional role of chromosomal sequences in 16SrI-B subgroup phytoplasmas including aster yellows and related strains. J Appl Microbiol 94:103–110

    Article  PubMed  CAS  Google Scholar 

  2. Hodgetts J et al (2008) Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. Int J Syst Evol Microbiol 58:1826–1837

    Article  PubMed  CAS  Google Scholar 

  3. Langer M, Maixner M (2004) Molecular characterisation of grapevine yellows associated phytoplasmas of the stolbur-group based on RFLP-analysis of non-ribosomal DNA. Vitis 43:191–199

    CAS  Google Scholar 

  4. Lee I-M, Zhao Y, Bottner KD (2006) SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Mol Cell Probes 20:87–91

    Article  PubMed  CAS  Google Scholar 

  5. Lee I-M et al (2010) Phylogenetic analysis and delineation of phytoplasmas based on secY gene sequences. Int J Syst Evol Microbiol 60:2887–2897

    Article  PubMed  Google Scholar 

  6. Martini M et al (2002) Genetic variability among flavescence dorée phytoplasmas from different origins in Italy and France. Mol Cell Probes 16:197–208

    Article  PubMed  CAS  Google Scholar 

  7. Martini M et al (2007) Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. Int J Syst Evol Microbiol 57:2037–2051

    Article  PubMed  CAS  Google Scholar 

  8. Mitrović J et al (2011) The groEL gene as an additional marker for finer differentiation of ‘Candidatus Phytoplasma asteris’-related strains. Ann Appl Biol 159:41–48

    Article  Google Scholar 

  9. Jarausch W, Lansac M, Dosba F (1994) Micropropagation for maintenance of mycoplasma-like organisms in infected Prunus marianna GF 8-1. Acta Hortic 359:169–176

    Google Scholar 

  10. Jarausch W, Lansac M, Dosba F (1996) Long-term maintenance of nonculturable apple-proliferation phytoplasmas in their micropropagated natural host plant. Plant Pathol 45:778–786

    Article  CAS  Google Scholar 

  11. Laimer da Mâchado M et al (2001) Improved detection of viruses and phytoplasmas in fruit tree tissue cultures. Acta Hortic 550:463–470

    Google Scholar 

  12. Laimer M et al (2002) FAIR CT 97-3889: Validierung von diagnostischen methoden an in vitro Pflanzer zur Zertifizierung von Obstgehőlzen. Erwerbs Obstbau 44:76–81

    Google Scholar 

  13. Ishiie T et al (1967) Suppressive effects of antibiotics of tetracycline group on development of mulberry dwarf disease. Ann Phytopathol Soc Jpn 33:267–275

    Article  CAS  Google Scholar 

  14. Bertaccini A et al (2004) Micropropagation and establishment of mite-borne virus-free garlic (Allium sativum). Acta Hortic 631:201–206

    Google Scholar 

  15. Bertaccini A et al (2004) Improved molecular methods for detection of European stone fruit yellows (ESFY) phytoplasmas from in vitro shoots of fruit trees. Acta Hortic 657:495–500

    CAS  Google Scholar 

  16. Plavsic B et al (1986) Kinetin treatment of stolbur diseased tomato plants (Lycopersicon esculentum L.) and the possibility of its application in chemotherapy. Acta Bot Croat 45:27–32

    CAS  Google Scholar 

  17. Veronesi F et al (2000) PCR indexing of phytoplasma-infected micropropagated periwinkle treated with PAP-II, a ribosome inactivating protein from Phytolacca americana leaves. Acta Hortic 530:113–120

    CAS  Google Scholar 

  18. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  19. Bertaccini A, Marani F (1986) BYMV-free clones of eight gladiolus cultivars obtained by meristem-tip culture. Acta Hortic 177:299–308

    Google Scholar 

  20. Bertaccini A, Davis RE, Lee I-M (1992) In vitro micropropagation for maintenance of mycoplasma-like organisms in infected plant tissues. HortSci 27:1041–1043

    Google Scholar 

  21. Bertaccini A et al (2000) Micropropagation of a collection of phytoplasma strains in periwinkle and other host plants. Proceedings of the 13th International Congress of IOM. Fukuoka, Japan, July 14–19, abstract 101

    Google Scholar 

  22. Bertaccini A et al (1992) Sensitive detection of mycoplasmalike organisms in field-collected and in vitro propagated plants of Brassica, Hydrangea and Chrysanthemum by polymerase chain reaction. Ann Appl Biol 121:593–599

    Article  Google Scholar 

  23. Duduk B, Bertaccini A (2011) Phytoplasma classification: taxonomy based on 16S ribosomal gene, is it enough? Phytopathogenic Mollicutes 1:3–13

    Google Scholar 

  24. The IRPCM Phytoplasma/Spiroplasma Working Team—Phytoplasma taxonomy group (2004) ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54:1243–1255

    Article  Google Scholar 

  25. Lee I-M et al (1998) Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int Syst Bacteriol 48:1153–1169

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assunta Bertaccini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bertaccini, A., Paltrinieri, S., Martini, M., Tedeschi, M., Contaldo, N. (2013). Micropropagation and Maintenance of Phytoplasmas in Tissue Culture. In: Dickinson, M., Hodgetts, J. (eds) Phytoplasma. Methods in Molecular Biology, vol 938. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-089-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-089-2_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-088-5

  • Online ISBN: 978-1-62703-089-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics