Skip to main content

Identification and Analysis of Inherited Retinal Disease Genes

  • Protocol
  • First Online:
Retinal Degeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 935))

Abstract

Inherited retinal diseases display a very high degree of clinical and genetic heterogeneity, which poses challenges in identifying the underlying defects in known genes and in identifying novel retinal disease genes. Here, we outline the state-of-the-art techniques to find the causative DNA variants, with special attention for next-generation sequencing which can combine molecular diagnostics and retinal disease gene identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA et al (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Article  PubMed  CAS  Google Scholar 

  2. Berger W, Kloeckener-Gruissem B, Neidhardt J (2010) The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res 29:335–375

    Article  PubMed  CAS  Google Scholar 

  3. den Hollander AI, Black A, Bennett J, Cremers FPM (2010) Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J Clin Invest 120:3042–3053

    Article  Google Scholar 

  4. Valle D, Kaiser-Kupfer MI, Del Valle LA (1977) Gyrate atrophy of the choroid and retina: deficiency of ornithine aminotransferase in transformed lymphocytes. Proc Natl Acad Sci U S A 74:5159–5161

    Article  PubMed  CAS  Google Scholar 

  5. Mitchell GA, Brody LC, Looney J, Steel G, Suchanek M, Dowling C et al (1988) An initiator codon mutation in ornithine-delta-aminotransferase causing gyrate atrophy of the choroid and retina. J Clin Invest 81:630–633

    Article  PubMed  CAS  Google Scholar 

  6. Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW et al (1990) A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343:364–366

    Article  PubMed  CAS  Google Scholar 

  7. McWilliam P, Farrar GJ, Kenna P, Bradley DG, Humphries MM, Sharp EM et al (1989) Autosomal dominant retinitis pigmentosa (ADRP): localization of an ADRP gene to the long arm of chromosome 3. Genomics 5:619–622

    Article  PubMed  CAS  Google Scholar 

  8. Cremers FPM, van de Pol TJR, van Kerkhoff EPM, Wieringa B, Ropers HH (1990) Cloning of a gene that is rearranged in patients with choroideraemia. Nature 347:674–677

    Article  PubMed  CAS  Google Scholar 

  9. Collin RWJ, van den Born LI, Klevering BJ, de Castro Miro M, Littink KW, Arimadyo K et al (2011) High-resolution homozygosity mapping is a powerful tool to detect novel mutations causative of autosomal recessive RP in the Dutch population. Invest Ophthalmol Vis Sci 52:2227–2239

    Article  PubMed  CAS  Google Scholar 

  10. Bainbridge JWB, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239

    Article  PubMed  CAS  Google Scholar 

  11. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L et al (2008) Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19:979–990

    Article  PubMed  CAS  Google Scholar 

  12. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248

    Article  PubMed  CAS  Google Scholar 

  13. Pasadhika S, Fishman GA, Stone EM, Lindeman M, Zelkha R, Lopez I et al (2010) Differential macular morphology in patients with RPE65-, CEP290-, GUCY2D-, and AIPL1-related Leber congenital amaurosis. Invest Ophthalmol Vis Sci 51:2608–2614

    Article  PubMed  Google Scholar 

  14. Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  15. Boonstra NF, van Nouhuys CE, Schuil J, de Wijs I, van der Donk KP, Nikopoulos K et al (2009) Clinical and molecular evaluation of probands and family members with familial exudative vitreoretinopathy (FEVR). Invest Ophthalmol Vis Sci 50:4379–4385

    Article  PubMed  Google Scholar 

  16. Al-Maghtheh M, Vithana E, Tarttelin E, Jay M, Evans K, Moore T et al (1996) Evidence for a major retinitis pigmentosa locus on 19q13.4 (RP11) and association with a unique bimodal expressivity phenotype. Am J Hum Genet 59:864–871

    PubMed  CAS  Google Scholar 

  17. Hoffmann K, Lindner TH (2005) easyLINKAGE-Plus–automated linkage analyses using large-scale SNP data. Bioinformatics 21:3565–3567

    Article  PubMed  CAS  Google Scholar 

  18. Ruschendorf F, Nurnberg P (2005) ALOHOMORA: a tool for linkage analysis using 10 K SNP array data. Bioinformatics 21:2123–2125

    Article  PubMed  Google Scholar 

  19. Terwillinger DJ, Ott J (1994) Handbook for human genetic linkage. Johns Hopkins University Press, Baltimore

    Google Scholar 

  20. Nyholt DR (2008) In: Neale BM, Ferreira MAR, Medland SE, Posthuma D (eds) Principles of linkage analysis. Statistical genetics: gene mapping through linkage and association. Taylor & Francis Group, New York, pp 113–134

    Google Scholar 

  21. Seelow D, Schuelke M, Hildebrandt F, Nurnberg P (2009) HomozygosityMapper–an interactive approach to homozygosity mapping. Nucleic Acids Res 37:W593–W599

    Article  PubMed  CAS  Google Scholar 

  22. Browning BL, Browning SR (2011) A fast, powerful method for detecting identity by descent. Am J Hum Genet 88:173–182

    Article  PubMed  CAS  Google Scholar 

  23. Littink KW, Koenekoop RK, van den Born LI, Collin RWJ, Moruz L, Veltman JA et al (2010) Homozygosity mapping in patients with cone–rod dystrophy: novel mutations and clinical characterizations. Invest Ophthalmol Vis Sci 51:5943–5951

    Article  PubMed  Google Scholar 

  24. Collin RWJ, Littink KW, Klevering BJ, van den Born LI, Koenekoop RK, Zonneveld-Vrieling MN et al (2008) Identification of a 2 Mb human ortholog of Drosophila eyes shut/spacemaker that is mutated in patients with retinitis pigmentosa. Am J Hum Genet 83:594–603

    Article  PubMed  CAS  Google Scholar 

  25. Collin RWJ, Safieh C, Littink KW, Shalev SA, Garzozi HJ, Rizel L et al (2010) Mutations in C2ORF71 cause autosomal-recessive retinitis pigmentosa. Am J Hum Genet 86:783–788

    Article  PubMed  CAS  Google Scholar 

  26. Hildebrandt F, Heeringa SF, Ruschendorf F, Attanasio M, Nurnberg G, Becker C et al (2009) A systematic approach to mapping recessive disease genes in individuals from outbred populations. PLoS Genet 5:e1000353

    Article  PubMed  Google Scholar 

  27. den Hollander AI, Koenekoop RK, Mohamed MD, Arts HH, Boldt K, Towns KV et al (2007) Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis. Nat Genet 39:889–895

    Article  Google Scholar 

  28. Harville HM, Held S, Diaz-Font A, Davis EE, Diplas BH, Lewis RA et al (2010) Identification of 11 novel mutations in eight BBS genes by high-resolution homozygosity mapping. J Med Genet 47:262–267

    Article  PubMed  CAS  Google Scholar 

  29. Woods CG, Cox J, Springell K, Hampshire DJ, Mohamed MD, McKibbin M et al (2006) Quantification of homozygosity in consanguineous individuals with autosomal recessive disease. Am J Hum Genet 78:889–896

    Article  PubMed  CAS  Google Scholar 

  30. Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in disease. Annu Rev Med 61:437–455

    Article  PubMed  CAS  Google Scholar 

  31. Nannya Y, Sanada M, Nakazaki K, Hosoya N, Wang L, Hangaishi A et al (2005) A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res 65:6071–6079

    Article  PubMed  CAS  Google Scholar 

  32. Abd El-Aziz MM, Barragan I, O’Driscoll C, Borrego S, Abu-Safieh L, Pieras JI et al (2008) Large-scale molecular analysis of a 34 Mb interval on chromosome 6q: major refinement of the RP25 interval. Ann Hum Genet 72:463–477

    Article  PubMed  CAS  Google Scholar 

  33. Humbert G, Delettre C, Senechal A, Bazalgette C, Barakat A, Bazalgette C et al (2006) Homozygous deletion related to Alu repeats in RLBP1 causes retinitis punctata albescens. Invest Ophthalmol Vis Sci 47:4719–4724

    Article  PubMed  Google Scholar 

  34. Metzker ML (2010) Sequencing technologies: the next generation. Nat Rev Genet 11:31–46

    Article  PubMed  CAS  Google Scholar 

  35. Glenn TC (2011) Field guide to next-generation DNA sequencers. Mol Ecol Resour 11(5):759–769

    Article  PubMed  CAS  Google Scholar 

  36. Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A et al (2010) Target-enrichment strategies for next-generation sequencing. Nat Methods 7:111–118

    Article  PubMed  CAS  Google Scholar 

  37. Gilissen C, Hoischen A, Brunner HG, Veltman JA (2011) Unlocking mendelian disease using exome sequencing. Genome Biol 12(9):228

    Article  PubMed  CAS  Google Scholar 

  38. Nikopoulos K, Gilissen C, Hoischen A, van Nouhuys CE, Boonstra FN, Blokland EAW et al (2010) Next-generation sequencing of a 40 Mb linkage interval reveals TSPAN12 mutations in patients with familial exudative vitreoretinopathy. Am J Hum Genet 86:240–247

    Article  PubMed  CAS  Google Scholar 

  39. Estrada-Cuzcano A, Neveling K, Kohl S, Banin E, Rotenstreich Y, Sharon D, Falik-Zaccai TC, Hipp S, Roepman R, Wissinger B, Letteboer SJ, Mans DA, Blokland EA, Kwint MP, Gijsen SJ, van Huet RA, Collin RWJ, Scheffer H, Veltman JA, Zrenner E; European Retinal Disease Consortium, den Hollander AI, Klevering BJ, Cremers FPM. Am J Hum Genet. 2012 Jan 13;90(1):102–109.

    Article  PubMed  CAS  Google Scholar 

  40. Bao S, Jiang R, Kwan W, Wang B, Ma X, Song YQ (2011) Evaluation of next-generation sequencing software in mapping and assembly. J Hum Genet 56:406–414

    Article  PubMed  CAS  Google Scholar 

  41. Neveling K, Collin RWJ, Gilissen C, van Huet RA, Visser L, Kwint MP, Gijsen SJ, Zonneveld MN, Wieskamp N, de Ligt J, Siemiatkowska AM, Hoefsloot LH, Buckley MF, Kellner U, Branham KE, den Hollander AI, Hoischen A, Hoyng C, Klevering BJ, van den Born LI, Veltman JA, Cremers FPM, Scheffer H. Hum Mutat. 2012 Jun;33(6):963–972.

    Article  PubMed  CAS  Google Scholar 

  42. Gilissen C, Arts HH, Hoischen A, Spruijt L, Mans DA, Arts P et al (2010) Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am J Hum Genet 87:418–423

    Article  PubMed  CAS  Google Scholar 

  43. Hoischen A, van Bon BW, Gilissen C, Arts P, van Lier B, Steehouwer M et al (2010) De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet 42:483–485

    Article  PubMed  CAS  Google Scholar 

  44. Keen TJ, Inglehearn CF (1996) Mutations and polymorphisms in the human peripherin-RDS gene and their involvement in inherited retinal degeneration. Hum Mutat 8:297–303

    Article  PubMed  CAS  Google Scholar 

  45. Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, Chidambaram A et al (1997) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15:236–246

    Article  PubMed  CAS  Google Scholar 

  46. Cremers FPM, van de Pol TJR, van Driel M, den Hollander AI, van Haren FJJ, Knoers NVAM et al (1998) Autosomal recessive retinitis pigmentosa and cone–rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum Mol Genet 7:355–362

    Article  PubMed  CAS  Google Scholar 

  47. Berger W, van de Pol TJR, Warburg M, Gal A, Bleeker-Wagemakers EM, de Silva H et al (1992) Mutations in the candidate gene for Norrie disease. Hum Mol Genet 1:461–465

    Article  PubMed  CAS  Google Scholar 

  48. Grayson C, Reid SN, Ellis JA, Rutherford A, Sowden JC, Yates JR et al (2000) Retinoschisin, the X-linked retinoschisis protein, is a secreted photoreceptor protein, and is expressed and released by Weri-Rb1 cells. Hum Mol Genet 9:1873–1879

    Article  PubMed  CAS  Google Scholar 

  49. Bech-Hansen NT, Naylor MJ, Maybaum TA, Pearce WG, Koop B, Fishman GA et al (1998) Loss-of-function mutations in a calcium-channel α1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet 19:264–267

    Article  PubMed  CAS  Google Scholar 

  50. Bech-Hansen NT, Naylor MJ, Maybaum TA, Sparkes RL, Koop B, Birch DG et al (2000) Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat Genet 26:319–323

    Article  PubMed  CAS  Google Scholar 

  51. Yang Z, Peachey NS, Moshfeghi DM, Thirumalaichary S, Chorich L, Shugart YY et al (2002) Mutations in the RPGR gene cause X-linked cone dystrophy. Hum Mol Genet 11:605–611

    Article  PubMed  CAS  Google Scholar 

  52. Jalkanen R, Mantyjarvi M, Tobias R, Isosomppi J, Sankila EM, Alitalo T et al (2006) X linked cone–rod dystrophy, CORDX3, is caused by a mutation in the CACNA1F gene. J Med Genet 43:699–704

    Article  PubMed  CAS  Google Scholar 

  53. Roepman R, van Duynhoven G, Rosenberg T, Pinckers AJLG, Bleeker-Wagemakers EM, Bergen AAB et al (1996) Positional cloning of the gene for X-linked retinitis pigmentosa: homology with the guanine-nucleotide-exchange factor RCC1. Hum Mol Genet 5:1035–1041

    Article  PubMed  CAS  Google Scholar 

  54. Meindl A, Dry K, Herrmann K, Manson F, Ciccodicola A, Edgar A et al (1996) A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nat Genet 13:35–42

    Article  PubMed  CAS  Google Scholar 

  55. Vervoort R, Lennon A, Bird AC, Tulloch B, Axton R, Miano MG et al (2000) Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet 25:462–466

    Article  PubMed  CAS  Google Scholar 

  56. Schwahn U, Lenzner S, Dong J, Feil S, Hinzmann B, van Duijnhoven G et al (1998) Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet 19:327–332

    Article  PubMed  CAS  Google Scholar 

  57. Bowne SJ, Sullivan LS, Koboldt DC, Ding L, Fulton R, Abbott RM et al (2011) Identification of disease-causing mutations in autosomal dominant retinitis pigmentosa (adRP) using next-generation DNA sequencing. Invest Ophthalmol Vis Sci 52:494–503

    Article  PubMed  CAS  Google Scholar 

  58. Kohl S, Marx T, Giddings I, Jägle H, Jacobson SG, Apfelstedt-Sylla E et al (1998) Total colourblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel. Nat Genet 19:257–259

    Article  PubMed  CAS  Google Scholar 

  59. Kohl S, Baumann B, Broghammer M, Jägle H, Sieving P, Kellner U et al (2000) Mutations in the CNGB3 gene encoding the β-subunit of the cone photoreceptor cGMP-gated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21. Hum Mol Genet 9:2107–2116

    Article  PubMed  CAS  Google Scholar 

  60. Kohl S, Baumann B, Rosenberg T, Kellner U, Lorenz B, Vadala M et al (2002) Mutations in the cone photoreceptor G-protein alpha-subunit gene GNAT2 in patients with achromatopsia. Am J Hum Genet 71:422–425

    Article  PubMed  CAS  Google Scholar 

  61. Thiadens AAHJ, den Hollander AI, Roosing S, Nabuurs SB, Zekveld-Vroon RC, Collin RWJ et al (2009) Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders. Am J Hum Genet 85:240–247

    Article  PubMed  CAS  Google Scholar 

  62. Jaakson K, Zernant J, Kulm M, Hutchinson A, Tonisson N, Hawlina M et al (2003) Genotyping microarray (gene chip) for the ABCR (ABCA4) gene. Hum Mutat 22:395–403

    Article  PubMed  CAS  Google Scholar 

  63. Avila-Fernandez A, Cantalapiedra D, Aller E, Vallespin E, Aguirre-Lamban J, Blanco-Kelly F et al (2010) Mutation analysis of 272 Spanish families affected by autosomal recessive retinitis pigmentosa using a genotyping microarray. Mol Vis 16:2550–2558

    PubMed  CAS  Google Scholar 

  64. Joensuu T, Hamalainen R, Yuan B, Johnson C, Tegelberg S, Gasparini P et al (2001) Mutations in a novel gene with transmembrane domains underlie Usher syndrome type 3. Am J Hum Genet 69:673–684

    Article  PubMed  CAS  Google Scholar 

  65. den Hollander AI, Koenekoop RK, Yzer S, Lopez I, Arends ML, Voesenek KEJ et al (2006) Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 79:556–561

    Article  Google Scholar 

  66. Zelinger L, Banin E, Obolensky A, Mizrahi-Meissonnier L, Beryozkin A, Bandah-Rozenfeld D et al (2011) A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews. Am J Hum Genet 88:207–215

    Article  PubMed  CAS  Google Scholar 

  67. den Hollander AI, Lopez I, Yzer S, Zonneveld MN, Janssen IM, Strom TM et al (2007) Identification of novel mutations in patients with Leber congenital amaurosis and juvenile RP by genome-wide homozygosity mapping with SNP microarrays. Invest Ophthalmol Vis Sci 48:5690–5698

    Article  Google Scholar 

  68. Bandah-Rozenfeld D, Collin RWJ, Banin E, van den Born LI, Coene KLM, Siemiatkowska AM et al (2010) Mutations in IMPG2, encoding interphotoreceptor matrix proteoglycan 2, cause autosomal-recessive retinitis pigmentosa. Am J Hum Genet 87:199–208

    Article  PubMed  CAS  Google Scholar 

  69. Zuchner S, Dallman J, Wen R, Beecham G, Naj A, Farooq A et al (2011) Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. Am J Hum Genet 88:201–206

    Article  PubMed  Google Scholar 

  70. Langmann T, Di Gioia SA, Rau I, Stohr H, Maksimovic NS, Corbo JC et al (2010) Nonsense mutations in FAM161A cause RP28-associated recessive retinitis pigmentosa. Am J Hum Genet 87:376–381

    Article  PubMed  CAS  Google Scholar 

  71. Ozgul RK, Siemiatkowska AM, Yucel D, Myers CA, Collin RWJ, Zonneveld MN et al (2011) Exome sequencing and cis-regulatory mapping identify mutations in MAK, a gene encoding a regulator of ciliary length, as a cause of retinitis pigmentosa. Am J Hum Genet 89:253–264

    Article  PubMed  Google Scholar 

  72. Thompson DA, Janecke AR, Lange J, Feathers KL, Hubner CA, McHenry CL et al (2005) Retinal degeneration associated with RDH12 mutations results from decreased 11-cis retinal synthesis due to disruption of the visual cycle. Hum Mol Genet 14:3865–3875

    Article  PubMed  CAS  Google Scholar 

  73. Tucker BA, Scheetz TE, Mullins RF, Deluca AP, Hoffmann JM, Johnston RM et al (2011) Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene male germ cell-associated kinase (MAK) as a cause of retinitis pigmentosa. Proc Natl Acad Sci U S A 108(34):E569–E576

    Article  PubMed  CAS  Google Scholar 

  74. Booij JC, Bakker A, Kulumbetova J, Moutaoukil Y, Smeets B, Verheij J et al (2011) Simultaneous mutation detection in 90 retinal disease genes in multiple patients using a custom-designed 300-kb retinal resequencing chip. Ophthalmology 118:160–167

    Article  PubMed  Google Scholar 

  75. Coppieters F, De Baere E, Leroy B (2011) Development of a next-generation sequencing platform for retinal dystrophies, with LCA and RP as proof of concept. Bull Soc Belge Ophtalmol 317:59–60

    Google Scholar 

  76. Vissers LELM, de Ligt J, Gilissen C, Janssen I, Steehouwer M, de Vries P et al (2010) A de novo paradigm for mental retardation. Nat Genet 42:1109–1112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Community’s Seventh Framework Program FP7/2007-2013, grant nr. 223143- TECHGENE, and by the Netherlands Organization for Health Research and Development, ZonMW grant 912-09-047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob W. J. Collin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Neveling, K., den Hollander, A.I., Cremers, F.P.M., Collin, R.W.J. (2012). Identification and Analysis of Inherited Retinal Disease Genes. In: Weber, B., LANGMANN, T. (eds) Retinal Degeneration. Methods in Molecular Biology, vol 935. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-080-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-080-9_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-079-3

  • Online ISBN: 978-1-62703-080-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics