Skip to main content

A Screening Strategy for Trapping the Inactive Conformer of a Dimeric Enzyme with a Small Molecule Inhibitor

  • Protocol
  • First Online:
Rational Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 928))

Abstract

Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi’s sarcoma (KS), the most common cancer in AIDS patients. All herpesviruses express a conserved dimeric serine protease that is required for generating infectious virions and is therefore of pharmaceutical interest. Given the past challenges of developing drug-like active-site inhibitors to this class of proteases, small-molecules targeting allosteric sites are of great value. In light of evidence supporting a strong structural linkage between the dimer interface and the protease active site, we have focused our efforts on the dimer interface for identifying dimer disrupting inhibitors. Here, we describe a high throughput screening approach for identifying small molecule dimerization inhibitors of KSHV protease. The helical mimetic, small molecule library used, as well as general strategies for selecting compound libraries for this application will also be discussed. This methodology can be applicable to other systems where an alpha helical moiety plays a dominant role at the interaction site of interest, and in vitro assays to monitor function are in place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Borthwick AD et al (2002) Design and ­synthesis of pyrrolidine-5,5-trans-lactams (5-oxohexahydropyrrolo[3,2-b]pyrroles) as novel mechanism-based inhibitors of human cytomegalovirus protease. 2. Potency and chirality. J Med Chem 45:1–18

    Article  PubMed  CAS  Google Scholar 

  2. Borthwick AD et al (2002) Pyrrolidine-5,5-trans-lactams as novel mechanism-based inhibitors of human cytomegalovirus protease. Part 3: potency and plasma stability. Bioorg Med Chem Lett 12:1719–22

    Article  PubMed  CAS  Google Scholar 

  3. Borthwick AD et al (1998) Design and synthesis of monocyclic beta-lactams as mechanism-based inhibitors of human cytomegalovirus protease. Bioorg Med Chem Lett 8:365–70

    Article  PubMed  CAS  Google Scholar 

  4. Gopalsamy A et al (2004) Design and syntheses of 1,6-naphthalene derivatives as selective HCMV protease inhibitors. J Med Chem 47:1893–9

    Article  PubMed  CAS  Google Scholar 

  5. Ogilvie W et al (1997) Peptidomimetic inhibitors of the human cytomegalovirus protease. J Med Chem 40:4113–35

    Article  PubMed  CAS  Google Scholar 

  6. Waxman L, Darke PL (2000) The herpesvirus proteases as targets for antiviral chemotherapy. Antivir Chem Chemother 11:1–22

    PubMed  CAS  Google Scholar 

  7. Marnett AB, Nomura AM, Shimba N, Ortiz de Montellano PR, Craik CS (2004) Communication between the active sites and dimer interface of a herpesvirus protease revealed by a transition-state inhibitor. Proc Natl Acad Sci USA 101:6870–5

    Article  PubMed  CAS  Google Scholar 

  8. Nomura AM, Marnett AB, Shimba N, Dotsch V, Craik CS (2005) Induced structure of a helical switch as a mechanism to regulate enzymatic activity. Nat Struct Mol Biol 12:1019–20

    PubMed  CAS  Google Scholar 

  9. Nomura AM, Marnett AB, Shimba N, Dotsch V, Craik CS (2006) One functional switch mediates reversible and irreversible inactivation of a herpesvirus protease. Biochemistry 45:3572–9

    Article  PubMed  CAS  Google Scholar 

  10. Pray TR, Nomura AM, Pennington MW, Craik CS (1999) Auto-inactivation by cleavage within the dimer interface of Kaposi’s sarcoma-associated herpesvirus protease. J Mol Biol 289:197–203

    Article  PubMed  CAS  Google Scholar 

  11. Pray TR, Reiling KK, Demirjian BG, Craik CS (2002) Conformational change coupling the dimerization and activation of KSHV protease. Biochemistry 41:1474–82

    Article  PubMed  CAS  Google Scholar 

  12. Lazic A, Goetz DH, Nomura AM, Marnett AB, Craik CS (2007) Substrate modulation of enzyme activity in the herpesvirus protease family. J Mol Biol 373:913–23

    Article  PubMed  CAS  Google Scholar 

  13. Reiling KK, Pray TR, Craik CS, Stroud RM (2000) Functional consequences of the Kaposi’s sarcoma-associated herpesvirus protease structure: regulation of activity and dimerization by conserved structural elements. Biochemistry 39:12796–803

    Article  PubMed  CAS  Google Scholar 

  14. Shimba N, Nomura AM, Marnett AB, Craik CS (2004) Herpesvirus protease inhibition by dimer disruption. J Virol 78:6657–65

    Article  PubMed  CAS  Google Scholar 

  15. Lee GM, Craik CS (2009) Trapping moving targets with small molecules. Science 324:213–5

    Article  PubMed  CAS  Google Scholar 

  16. Shahian T et al (2009) Inhibition of a Viral Enzyme by a Small Molecule Dimer Disruptor. Nat Chem Biol 9:640–6

    Article  Google Scholar 

  17. Lu F et al (2006) Proteomimetic libraries: design, synthesis, and evaluation of p53-MDM2 interaction inhibitors. J Comb Chem 8:315–25

    Article  PubMed  CAS  Google Scholar 

  18. Cummings CG, Hamilton AD (2010) Disrupting protein-protein interactions with non-peptidic, small molecule alpha-helix mimetics. Curr Opin Chem Biol 14:341–6

    Article  PubMed  CAS  Google Scholar 

  19. Davis JM, Tsou LK, Hamilton AD (2007) Synthetic non-peptide mimetics of alpha-helices. Chem Soc Rev 36:326–34

    Article  PubMed  CAS  Google Scholar 

  20. Gavathiotis E et al (2008) BAX activation is initiated at a novel interaction site. Nature 455:1076–81

    Article  PubMed  CAS  Google Scholar 

  21. Henchey LK, Jochim AL, Arora PS (2008) Contemporary strategies for the stabilization of peptides in the alpha-helical conformation. Curr Opin Chem Biol 12:692–7

    Article  PubMed  CAS  Google Scholar 

  22. Moellering RE et al (2009) Direct inhibition of the NOTCH transcription factor complex. Nature 462:182–8

    Article  PubMed  CAS  Google Scholar 

  23. Zhang JH, Chung TD, Oldenburg KR (1999) A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen 4:67–73

    Article  PubMed  Google Scholar 

  24. Feng BY, Shelat A, Doman TN, Guy RK, Shoichet BK (2005) High-throughput assays for promiscuous inhibitors. Nat Chem Biol 1:146–8

    Article  PubMed  CAS  Google Scholar 

  25. Feng BY, Shoichet BK (2006) A detergent-based assay for the detection of promiscuous inhibitors. Nat Protoc 1:550–3

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants T32 GMO7810, AIO67423 (C.S.C.), and by the American Lebanese and Syrian Associated Charities and St Jude Children’s Research Hospital (R.K.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Shahian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Craik, C.S., Shahian, T. (2012). A Screening Strategy for Trapping the Inactive Conformer of a Dimeric Enzyme with a Small Molecule Inhibitor. In: Zheng, Y. (eds) Rational Drug Design. Methods in Molecular Biology, vol 928. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-008-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-008-3_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-007-6

  • Online ISBN: 978-1-62703-008-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics