Skip to main content

Phos-tag Affinity Electrophoresis for Protein Kinase Profiling

  • Protocol
  • First Online:
Protein Kinase Technologies

Part of the book series: Neuromethods ((NM,volume 68))

Abstract

Protein kinase profiling can provide a basis for understanding the molecular origins of diseases and, potentially, for developing tools for therapeutic intervention. It is therefore very important to develop advanced experimental procedures for convenient and accurate determination of the phosphorylation status of certain substrate proteins in the life sciences. Here, we introduce a method for protein kinase profiling by using a novel type of phosphate-affinity sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The phosphate-affinity site is a polyacrylamide-bound dinuclear metal complex of a phosphate-binding tag molecule known as Phos-tag. The Phos-tag SDS-PAGE method permits detection of changes in the mobility of phosphorylated proteins in comparison with their nonphosphorylated counterparts and thereby allows quantitative analysis of protein kinase reactions without any special apparatus, radioactive isotopes, or chemical labels. If a kinase reaction occurs at one residue of a substrate protein, the monophosphorylated and nonphosphorylated forms can be simultaneously detected as two migration bands on a Phos-tag SDS-PAGE gel. In the case of hyperphosphorylation, the phosphorylated products appear as multiple migration bands, depending on the phosphorylation status in terms of the numbers and the positions of attached phosphate groups. This article discusses applications of label-free kinase activity profiling by the Phos-tag SDS-PAGE method in the analysis of phosphorylated substrates derived from various kinase reactions. The resolving power of the affinity electrophoresis provides detailed information that leads to an overview of the kinase-dependent dynamics of various substrate proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter T (2000) Signaling: 2000 and beyond. Cell 100:113–127

    Article  PubMed  CAS  Google Scholar 

  2. Johnson SA, Hunter T (2005) Kinomics: methods for deciphering the kinome. Nat Methods 2:17–25

    Article  PubMed  CAS  Google Scholar 

  3. Cohen P (2002) Protein kinase: the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315

    Article  PubMed  CAS  Google Scholar 

  4. Lee VMY, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  PubMed  CAS  Google Scholar 

  5. Oda Y, Nagasu T, Chait BT (2001) Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol 19:379–382

    Article  PubMed  CAS  Google Scholar 

  6. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20:301–305

    Article  PubMed  CAS  Google Scholar 

  7. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJD (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  PubMed  CAS  Google Scholar 

  8. Kokubu M, Ishihama Y, Sato T, Nagasu T, Oda Y (2005) Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Anal Chem 77:5144–5154

    Article  PubMed  CAS  Google Scholar 

  9. Kweon HK, Håkansson K (2006) Selective ­zirconium dioxide-based enrichment of ­phosphorylated peptides for mass spectrometric analysis. Anal Chem 78:1743–1749

    Article  PubMed  CAS  Google Scholar 

  10. Sugiyama N, Masuda T, Shinoda K, Nakamura A, Tomita M, Ishihama Y (2007) Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 6:1103–1109

    Article  PubMed  CAS  Google Scholar 

  11. Kinoshita E, Takahashi M, Takeda H, Shiro M, Koike T (2004) Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc(II) complex. Dalton Trans: 1189–1193

    Google Scholar 

  12. Takeda H, Kawasaki A, Takahashi M, Yamada A, Koike T (2003) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of phosphorylated compounds using a novel phosphate capture molecule. Rapid Commun Mass Spectrom 17:2075–2081

    Article  PubMed  CAS  Google Scholar 

  13. Prudent M, Rossier JS, Lion N, Girault HH (2008) Microfabricated dual sprayer for on-line mass tagging of phosphopeptides. Anal Chem 80:2531–2538

    Article  PubMed  CAS  Google Scholar 

  14. Kinoshita E, Yamada A, Takeda H, Kinoshita-Kikuta E, Koike T (2005) Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins. J Sep Sci 28:155–162

    Article  PubMed  CAS  Google Scholar 

  15. Kinoshita-Kikuta E, Kinoshita E, Yamada A, Endo M, Koike T (2006) Enrichment of phosphorylated proteins from cell lysate using a novel phosphate-affinity chromatography at physiological pH. Proteomics 6:5088–5095

    Article  PubMed  CAS  Google Scholar 

  16. Kinoshita-Kikuta E, Kinoshita E, Koike T (2009) Phos-tag beads as an immunoblotting enhancer for selective detection of phosphoproteins in cell lysates. Anal Biochem 389:83–85

    Article  PubMed  CAS  Google Scholar 

  17. Kinoshita-Kikuta E, Yamada A, Inoue C, Kinoshita E, Koike T (2011) A novel phosphate-affinity bead with immobilized Phos-tag for separation and enrichment of phosphopeptides and phosphoproteins. J Integr OMICS 1:157–169

    Google Scholar 

  18. Inamori K, Kyo M, Nishiya Y, Inoue Y, Sonoda T, Kinoshita E, Koike T, Katayama Y (2005) Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule. Anal Chem 77:3979–3985

    Article  PubMed  CAS  Google Scholar 

  19. Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5:749–757

    PubMed  CAS  Google Scholar 

  20. Takiyama K, Kinoshita E, Kinoshita-Kikuta E, Fujioka Y, Kubo Y, Koike T (2009) A ­Phos-tag-based fluorescence resonance energy ­transfer system for the analysis of the dephosphorylation of phosphopeptides. Anal Biochem 388:235–241

    Article  PubMed  CAS  Google Scholar 

  21. Somura M, Takiyama K, Kinoshita-Kikuta E, Kinoshita E, Koike T (2011) A Phos-tag-based fluorescence resonance energy transfer system for the analysis of the kinase reaction of a substrate peptide. Anal Methods 3:1303–1309

    Article  CAS  Google Scholar 

  22. Kinoshita-Kikuta E, Aoki Y, Kinoshita E, Koike T (2007) Label-free kinase profiling using phosphate affinity polyacrylamide gel electrophoresis. Mol Cell Proteomics 6:356–366

    PubMed  CAS  Google Scholar 

  23. Kinoshita E, Kinoshita-Kikuta E, Matsubara M, Yamada S, Nakamura H, Shiro Y, Aoki Y, Okita K, Koike T (2008) Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate-affinity SDS-PAGE. Proteomics 8:2994–3003

    Article  PubMed  CAS  Google Scholar 

  24. Kinoshita E, Kinoshita-Kikuta E, Matsubara M, Aoki Y, Ohie S, Mouri Y, Koike T (2009) Two-dimensional phosphate-affinity gel electrophoresis for the analysis of phosphoprotein isotypes. Electrophoresis 30:550–559

    Article  PubMed  CAS  Google Scholar 

  25. Kinoshita E, Kinoshita-Kikuta E, Ujihara H, Koike T (2009) Mobility shift detection of phosphorylation on large proteins using a Phos-tag SDS-PAGE gel strengthened with agarose. Proteomics 9:4098–4101

    Article  PubMed  CAS  Google Scholar 

  26. Kinoshita E, Kinoshita-Kikuta E, Koike T (2009) Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat Protoc 4:1513–1521

    Article  PubMed  CAS  Google Scholar 

  27. Kinoshita E, Kinoshita-Kikuta E (2011) Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling. Proteomics 11:319–323

    Article  PubMed  CAS  Google Scholar 

  28. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  29. Kinoshita E, Kinoshita-Kikuta E, Koike T (2009) Phosphate-affinity gel electrophoresis using a Phos-tag molecule for phosphoproteome study. Curr Proteomics 6:104–121

    CAS  Google Scholar 

  30. Lilien J, Balsamo J (2005) The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of β-catenin. Curr Opin Cell Biol 17:459–465

    Article  PubMed  CAS  Google Scholar 

  31. Kikuchi A (2003) Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci 94:225–229

    Article  PubMed  CAS  Google Scholar 

  32. Taurin S, Sandbo N, Qin Y, Browning D, Dulin NO (2006) Phosphorylation of β-catenin by cyclic AMP-dependent protein kinase. J Biol Chem 281:9971–9976

    Article  PubMed  CAS  Google Scholar 

  33. Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, Mills GB, Kobayashi R, Hunter T, Lu Z (2007) Phosphorylation of β-catenin by AKT promotes β-catenin transcriptional activity. J Biol Chem 282:11221–11229

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the Research Center for Molecular Medicine and the Analysis Center of Life Science, Hiroshima University, Japan, for the use of their facilities. This work was supported in part by Grants-in-Aid for Scientific Research (B, 22390006; C, 22590037; C, 24590050) from the Japan Society for the Promotion of Science (JSPS), by a Grant-in Aid for Scientific Research on Innovative Areas (23117522) from the Ministry of Education Culture, Sports, Science, and Technology (MEXT), and by a exploratory research grant (AS232Z01251F) for Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP) from the Japan Science and Technology Agency (JST). Financial support was also provided by The Takeda Science Foundation and The Ube Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Kinoshita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kinoshita, E., Kinoshita-Kikuta, E., Koike, T. (2012). Phos-tag Affinity Electrophoresis for Protein Kinase Profiling. In: Mukai, H. (eds) Protein Kinase Technologies. Neuromethods, vol 68. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-824-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-824-5_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-823-8

  • Online ISBN: 978-1-61779-824-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics