Skip to main content

Microtubules, Drug Resistance, and Tumorigenesis

  • Chapter
  • First Online:
Cytoskeleton and Human Disease

Abstract

Microtubules are highly dynamic structures that comprise a- and b-tubulin heterodimers which are essential in mitosis. These features make microtubules an important target for many natural and synthetic anticancer drugs. Mutations in b-tubulin that affect microtubule polymer levels or drug binding are associated with resistance to tubulin-binding agents such as paclitaxel. Moreover, aberrant expression of specific b-tubulin isotypes, namely bIII-tubulin as well as microtubule-binding proteins are now recognized as clinically important determinants in tumor aggressiveness and resistance to chemotherapy. More recently, it has been suggested that b-tubulins may also be linked to the tumorigenic phenotype of certain cancers such as non-small-cell lung cancer. Understanding the mechanisms whereby b-tubulins exert their effect on drug resistance and tumorigenesis are critical to the identification of novel drug targets and improvements in current therapies to increase the long-term survival of cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verhey KJ, Gaertig J (2007) The tubulin code. Cell Cycle 6(17):2152–2160

    Article  PubMed  CAS  Google Scholar 

  2. Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10(3):194–204

    Article  PubMed  CAS  Google Scholar 

  3. Fojo AT, Menefee M (2005) Microtubule targeting agents: basic mechanisms of Multidrug Resistance (MDR). Semin Oncol 32(6 Suppl 7):S3–S8

    Article  Google Scholar 

  4. Chien AJ, Moasser MM (2008) Cellular mechanisms of resistance to anthracyclines and taxanes in cancer: intrinsic and acquired. Semin Oncol 35(2 Suppl 2):S1–14; quiz S39

    Article  CAS  Google Scholar 

  5. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4(4):253–265

    Article  PubMed  CAS  Google Scholar 

  6. Pasquier E, Kavallaris M (2008) Microtubules: a dynamic target in cancer therapy. IUBMB Life 60(3):165–170

    Article  PubMed  CAS  Google Scholar 

  7. Dumontet C, Jordan MA (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9(10):790–803

    Article  PubMed  CAS  Google Scholar 

  8. Downing KH (2000) Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu Rev Cell Dev Biol 16:89–111

    Article  PubMed  CAS  Google Scholar 

  9. Nettles JH et al (2004) The binding mode of epothilone A on alpha, beta-tubulin by electron crystallography. Science 305(5685):866–869

    Article  PubMed  CAS  Google Scholar 

  10. Breuninger LM et al (1995) Expression of multidrug resistance-associated protein in NIH/3T3 cells confers multidrug resistance associated with increased drug efflux and altered intracellular drug distribution. Cancer Res 55(22):5342–5347

    PubMed  CAS  Google Scholar 

  11. Hopper-Borge E et al (2004) Analysis of the drug resistance profile of multidrug resistance protein 7 (ABCC10): resistance to docetaxel. Cancer Res 64(14):4927–4930

    Article  PubMed  CAS  Google Scholar 

  12. Huisman MT et al (2005) MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid. Int J Cancer 116(5):824–829

    Article  PubMed  CAS  Google Scholar 

  13. Beck WT et al (1996) Methods to detect P-glycoprotein-associated multidrug resistance in patients’ tumors: consensus recommendations. Cancer Res 56(13):3010–3020

    PubMed  CAS  Google Scholar 

  14. Lhomme C et al (2008) Phase III study of valspodar (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. J Clin Oncol 26(16):2674–2682

    Article  PubMed  CAS  Google Scholar 

  15. Meisel C et al (2000) How to manage individualized drug therapy: application of pharmacogenetic knowledge of drug metabolism and transport. Clin Chem Lab Med 38(9):869–876

    Article  PubMed  CAS  Google Scholar 

  16. Berrieman HK, Lind MJ, Cawkwell L (2004) Do beta-tubulin mutations have a role in resistance to chemotherapy? Lancet Oncol 5(3):158–164

    Article  PubMed  CAS  Google Scholar 

  17. Giannakakou P et al (1997) Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 272(27):17118–17125

    Article  PubMed  CAS  Google Scholar 

  18. Kavallaris M et al (2001) Multiple microtubule alterations are associated with vinca alkaloid resistance in human leukemia cells. Cancer Res 61(15):5803–5809

    PubMed  CAS  Google Scholar 

  19. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312

    Article  PubMed  CAS  Google Scholar 

  20. Gajate C et al (2000) Induction of apoptosis in leukemic cells by the reversible microtubule-disrupting agent 2-methoxy-5-(2ʹ,3ʹ,4ʹ-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one: protection by Bcl-2 and Bcl-X(L) and cell cycle arrest. Cancer Res 60(10):2651–2659

    PubMed  CAS  Google Scholar 

  21. Ibrado AM et al (1996) Bcl-xL overexpression inhibits taxol-induced Yama protease activity and apoptosis. Cell Growth Differ 7(8):1087–1094

    PubMed  CAS  Google Scholar 

  22. Tang C et al (1994) High levels of p26BCL-2 oncoprotein retard taxol-induced apoptosis in human pre-B leukemia cells. Leukemia 8(11):1960–1969

    PubMed  CAS  Google Scholar 

  23. Deveraux QL, Reed JC (1999) IAP family proteins-suppressors of apoptosis. Genes Dev 13(3):239–252

    Article  PubMed  CAS  Google Scholar 

  24. Altieri DC (2001) The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol Med 7(12):542–547

    Article  PubMed  CAS  Google Scholar 

  25. Cheung CH et al (2009) Survivin counteracts the therapeutic effect of microtubule de-stabilizers by stabilizing tubulin polymers. Mol Cancer 8:43

    Article  PubMed  Google Scholar 

  26. Ryan BM et al (2006) Survivin expression in breast cancer predicts clinical outcome and is associated with HER2, VEGF, urokinase plasminogen activator and PAI-1. Ann Oncol 17(4):597–604

    Article  PubMed  CAS  Google Scholar 

  27. Schlette EJ et al (2004) Survivin expression predicts poorer prognosis in anaplastic large-cell lymphoma. J Clin Oncol 22(9):1682–1688

    Article  PubMed  CAS  Google Scholar 

  28. Sui L et al (2002) Survivin expression and its correlation with cell proliferation and prognosis in epithelial ovarian tumors. Int J Oncol 21(2):315–320

    PubMed  CAS  Google Scholar 

  29. Zaffaroni N et al (2002) Expression of the anti-apoptotic gene survivin correlates with taxol resistance in human ovarian cancer. Cell Mol Life Sci 59(8):1406–1412

    Article  PubMed  CAS  Google Scholar 

  30. Zhang M et al (2005) Adenovirus-mediated inhibition of survivin expression sensitizes human prostate cancer cells to paclitaxel in vitro and in vivo. Prostate 64(3):293–302

    Article  PubMed  CAS  Google Scholar 

  31. O’Brate A, Giannakakou P (2003) The importance of p53 location: nuclear or cytoplasmic zip code? Drug Resist Updat 6(6):313–322

    Article  PubMed  Google Scholar 

  32. Wahl AF et al (1996) Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat Med 2(1):72–79

    Article  PubMed  CAS  Google Scholar 

  33. Debernardis D et al (1997) p53 status does not affect sensitivity of human ovarian cancer cell lines to paclitaxel. Cancer Res 57(5):870–874

    PubMed  CAS  Google Scholar 

  34. Fan S et al (1998) Disruption of p53 function in immortalized human cells does not affect survival or apoptosis after taxol or vincristine treatment. Clin Cancer Res 4(4):1047–1054

    PubMed  CAS  Google Scholar 

  35. King TC et al (2000) p53 mutations do not predict response to paclitaxel in metastatic nonsmall cell lung carcinoma. Cancer 89(4):769–773

    Article  PubMed  CAS  Google Scholar 

  36. Malamou-Mitsi V et al (2006) Evaluation of the prognostic and predictive value of p53 and Bcl-2 in breast cancer patients participating in a randomized study with dose-dense sequential adjuvant chemotherapy. Ann Oncol 17(10):1504–1511

    Article  PubMed  CAS  Google Scholar 

  37. Luduena RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178;207–275

    Article  PubMed  CAS  Google Scholar 

  38. Ferlay J et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917

    Article  PubMed  CAS  Google Scholar 

  39. Travis WD et al (2011) International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6(2):244–285

    Article  PubMed  Google Scholar 

  40. Rosell R et al (2003) Transcripts in pretreatment biopsies from a three-arm randomized trial in metastatic non-small-cell lung cancer. Oncogene 22(23):3548–3553

    Article  PubMed  CAS  Google Scholar 

  41. Seve P et al (2005) Class III beta-tubulin expression in tumor cells predicts response and outcome in patients with non-small cell lung cancer receiving paclitaxel. Mol Cancer Ther 4(12):2001–2007

    Article  PubMed  CAS  Google Scholar 

  42. Koh Y et al (2010) Expression of class III beta-tubulin correlates with unfavorable survival outcome in patients with resected non-small cell lung cancer. J Thorac Oncol 5(3):320–325

    Article  PubMed  Google Scholar 

  43. Reiman T et al (2011) Cross-validation study of class III beta-tubulin as a predictive marker for benefit from adjuvant chemotherapy in resected non-small-cell lung cancer: analysis of four randomized trials. Ann Oncol 23(1):86–93

    Google Scholar 

  44. Vilmar AC, Santoni-Rugiu E, Sorensen JB (2011) Class III {beta}-tubulin in advanced NSCLC of adenocarcinoma subtype predicts superior outcome in a Randomized Trial. Clin Cancer Res 17(15):5205–5214

    Article  PubMed  CAS  Google Scholar 

  45. Kavallaris M et al (1997) Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest 100(5):1282–1293

    Article  PubMed  CAS  Google Scholar 

  46. Kavallaris M, Burkhart CA, Horwitz SB (1999) Antisense oligonucleotides to class III beta-tubulin sensitize drug-resistant cells to Taxol. Br J Cancer 80(7):1020–1025

    Article  PubMed  CAS  Google Scholar 

  47. Gan PP, Pasquier E, Kavallaris M (2007) Class III beta-tubulin mediates sensitivity to chemotherapeutic drugs in non small cell lung cancer. Cancer Res 67(19):9356–9363

    Article  PubMed  CAS  Google Scholar 

  48. Gan PP et al (2010) Microtubule dynamics, mitotic arrest, and apoptosis: drug-induced differential effects of betaIII-tubulin. Mol Cancer Ther 9(5):1339–1348

    Article  PubMed  CAS  Google Scholar 

  49. McCarroll JA et al (2011) betaIII-tubulin is a multifunctional protein involved in drug sensitivity and tumorigenesis in non-small cell lung cancer. Cancer Res 70(12):4995–5003

    Article  Google Scholar 

  50. Sankaranarayanan R, Ferlay J (2006) Worldwide burden of gynaecological cancer: the size of the problem. Best Pract Res Clin Obstet Gynaecol 20(2):207–225

    Article  PubMed  CAS  Google Scholar 

  51. Mozzetti S et al (2005) Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res 11(1):298–305

    PubMed  CAS  Google Scholar 

  52. Ferrandina G et al (2006) Class III beta-tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients. Clin Cancer Res 12(9):2774–2779

    Article  PubMed  CAS  Google Scholar 

  53. Hetland TE et al (2011) Class III beta-tubulin expression in advanced-stage serous ovarian carcinoma effusions is associated with poor survival and primary chemoresistance. Hum Pathol 42(7):1019–1026

    Article  PubMed  CAS  Google Scholar 

  54. Ohishi Y et al (2007) Expression of beta-tubulin isotypes in human primary ovarian carcinoma. Gynecol Oncol 105(3):586–592

    Article  PubMed  CAS  Google Scholar 

  55. Cicchillitti L et al (2009) Comparative proteomic analysis of paclitaxel sensitive A2780 epithelial ovarian cancer cell line and its resistant counterpart A2780TC1 by 2D-DIGE: the role of ERp57. J Proteome Res 8(4):1902–1912

    Article  PubMed  CAS  Google Scholar 

  56. Raspaglio G et al (2008) Hypoxia induces class III beta-tubulin gene expression by HIF-1alpha binding to its 3’ flanking region. Gene 409(1–2):100–108

    Article  PubMed  CAS  Google Scholar 

  57. Cortes J, Baselga J (2007) Targeting the microtubules in breast cancer beyond taxanes: the epothilones. Oncologist 12(3):271–280

    Article  PubMed  CAS  Google Scholar 

  58. Shalli K et al (2005) Alterations of beta-tubulin isotypes in breast cancer cells resistant to docetaxel. FASEB J 19(10):1299–1301

    PubMed  CAS  Google Scholar 

  59. Tommasi S et al (2007) Cytoskeleton and paclitaxel sensitivity in breast cancer: the role of beta-tubulins. Int J Cancer 120(10):2078–2085

    Article  PubMed  CAS  Google Scholar 

  60. Stengel C et al (2010) Class III beta-tubulin expression and in vitro resistance to microtubule targeting agents. Br J Cancer 102(2):316–324

    Article  PubMed  CAS  Google Scholar 

  61. Jemal A et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249

    Article  PubMed  Google Scholar 

  62. Ploussard G et al (2010) Class III beta-tubulin expression predicts prostate tumor aggressiveness and patient response to docetaxel-based chemotherapy. Cancer Res 70(22):9253–9264

    Article  PubMed  CAS  Google Scholar 

  63. Ranganathan S et al (1996) Increase of beta(III)- and beta(IVa)-tubulin isotopes in human prostate carcinoma cells as a result of estramustine resistance. Cancer Res 56(11):2584–2589

    PubMed  CAS  Google Scholar 

  64. Terry S et al (2009) Increased expression of class III beta-tubulin in castration-resistant human prostate cancer. Br J Cancer 101(6):951–956

    Article  PubMed  CAS  Google Scholar 

  65. Liu B et al (2001) Taxotere resistance in SUIT Taxotere resistance in pancreatic carcinoma cell line SUIT 2 and its sublines. World J Gastroenterol 7(6):855–859

    PubMed  CAS  Google Scholar 

  66. Lee KM et al (2007) Class III beta-tubulin, a marker of resistance to paclitaxel, is overexpressed in pancreatic ductal adenocarcinoma and intraepithelial neoplasia. Histopathology 51(4):539–546

    Article  PubMed  CAS  Google Scholar 

  67. DeAngelis LM (2001) Brain tumors. N Engl J Med 344(2):114–123

    Article  PubMed  CAS  Google Scholar 

  68. Katsetos CD et al (2009b) Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. II. gamma-Tubulin. J Cell Physiol 221(3):514–520

    Article  CAS  Google Scholar 

  69. Katsetos CD et al (2009a) Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. I. Class III beta-tubulin. J Cell Physiol 221(3):505–513

    Article  CAS  Google Scholar 

  70. Katsetos CD et al (2007) Class III beta-tubulin and gamma-tubulin are co-expressed and form complexes in human glioblastoma cells. Neurochem Res 32(8):1387–1398

    Article  PubMed  CAS  Google Scholar 

  71. Katsetos CD, Draber P, Kavallaris M (2011) Targeting III-Tubulin in glioblastoma multiforme: from cell biology and histopathology to cancer therapeutics. Anticancer Agents Med Chem 11:719–728

    Google Scholar 

  72. Ikota H et al (2006) Systematic immunohistochemical profiling of 378 brain tumors with 37 antibodies using tissue microarray technology. Acta Neuropathol 111(5):475–482

    Article  PubMed  CAS  Google Scholar 

  73. Ives NJ et al (2007) Chemotherapy compared with biochemotherapy for the treatment of metastatic melanoma: a meta-analysis of 18 trials involving 2,621 patients. J Clin Oncol 25(34):5426–5434

    Article  PubMed  CAS  Google Scholar 

  74. Zimpfer-Rechner C et al (2003) Randomized phase II study of weekly paclitaxel versus paclitaxel and carboplatin as second-line therapy in disseminated melanoma: a multicentre trial of the Dermatologic Co-operative Oncology Group (DeCOG). Melanoma Res 13(5):531–536

    Article  PubMed  CAS  Google Scholar 

  75. Mhaidat NM et al (2008) Melanoma cell sensitivity to Docetaxel-induced apoptosis is determined by class III beta-tubulin levels. FEBS Lett 582(2):267–272

    Article  PubMed  CAS  Google Scholar 

  76. Mhaidat NM et al (2007) Regulation of docetaxel-induced apoptosis of human melanoma cells by different isoforms of protein kinase C. Mol Cancer Res 5(10):1073–1081

    Article  PubMed  CAS  Google Scholar 

  77. Akasaka K et al (2009) Loss of class III beta-tubulin induced by histone deacetylation is associated with chemosensitivity to paclitaxel in malignant melanoma cells. J Invest Dermatol 129(6):1516–1526

    Article  PubMed  CAS  Google Scholar 

  78. De Donato M et al (2011) Class III beta-tubulin and the cytoskeletal gateway for drug resistance in ovarian cancer. J Cell Physiol Apr 25 (Epub ahead of print)

    Google Scholar 

Download references

Acknowledgments

We would like to thank all the researchers who have contributed to our understanding of microtubules, drug resistance, and cancer, and due to space limits we regret that we were not able to cite all the important contributions to the field. Joshua McCarroll and Maria Kavallaris are supported by grants from the National Health and Medical Research Council (NHMRC), Cancer Council New South Wales (MK), Cure Cancer Australia Foundation Grant (JM), Balnaves Young Researcher Award (JM), Cancer Institute New South Wales Early Career Development Fellowship (JM), and an NHMRC Senior Research Fellowship (MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Kavallaris Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McCarroll, J.A., Kavallaris, M. (2012). Microtubules, Drug Resistance, and Tumorigenesis. In: Kavallaris, M. (eds) Cytoskeleton and Human Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-788-0_12

Download citation

Publish with us

Policies and ethics