Skip to main content

Assessing Social Behavior Phenotypes in Adult Zebrafish: Shoaling, Social Preference, and Mirror Biting Tests

  • Protocol
  • First Online:
Zebrafish Protocols for Neurobehavioral Research

Abstract

Zebrafish are a popular model organism in neuroscience research, recently emerging as an excellent species to study complex social phenotypes. For example, zebrafish actively form shoals, which can be used to quantify their shoaling behaviors. Zebrafish also display strong social preference when placed in a tank with conspecific fish, a trait that can easily be quantified in the two-compartment preference test. The mirror biting test, based on mirror image stimulation, is another well-established method for studying zebrafish boldness and sociability. This chapter will describe three simple and efficient paradigms—shoaling, social preference, and mirror biting tests—for quantifying social behaviors in adult zebrafish. Reflecting different aspects of zebrafish social phenotypes, these models can be used individually or within a test battery.

Mimi Pham and Jolia Raymond contributed equally to this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saverino C, Gerlai R (2008) The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish. Behav Brain Res 191(1):77–87

    Article  PubMed  Google Scholar 

  2. Sassenrath EN, Chapman LF (1976) Primate social behavior as a method of analysis of drug action: studies with THC in monkeys. Fed Proc 35(11):2238–2244

    PubMed  CAS  Google Scholar 

  3. Miller LG et al (1987) Rapid increase in brain benzodiazepine receptor binding following defeat stress in mice. Brain Res 414(2):395–400

    Article  PubMed  CAS  Google Scholar 

  4. Potegal M et al (1993) Conditioned defeat in the Syrian golden hamster (Mesocricetus auratus). Behav Neural Biol 60(2):93–102

    Article  PubMed  CAS  Google Scholar 

  5. Price J et al (1994) The social competition hypothesis of depression. Br J Psychiatry 164(3):309–315

    Article  PubMed  CAS  Google Scholar 

  6. Veness C et al (2011) Early indicators of autism spectrum disorders at 12 and 24 months of age: a prospective, longitudinal comparative study. Autism. in press

    Google Scholar 

  7. Gunderson JG et al (2011) Ten-year course of borderline personality disorder: psychopathology and function from the Collaborative Longitudinal Personality Disorders Study. Arch Gen Psychiatry 68:827–837

    Article  PubMed  Google Scholar 

  8. Masi G et al (2011) Predictors of nonresponse to psychosocial treatment in children and adolescents with disruptive behavior disorders. J Child Adolesc Psychopharmacol 21(1):51–55

    Article  PubMed  Google Scholar 

  9. Figueira ML, Brissos S (2011) Measuring psychosocial outcomes in schizophrenia patients. Curr Opin Psychiatry 24(2):91–99

    PubMed  Google Scholar 

  10. Fano E et al (2001) Social stress paradigms in male mice: variations in behavior, stress and immunology. Physiol Behav 73(1–2):165–173

    Article  PubMed  CAS  Google Scholar 

  11. Ribeiro Do Couto B et al (2009) Social experiences affect reinstatement of cocaine-induced place preference in mice. Psychopharmacology (Berl) 207(3):485–498

    Article  CAS  Google Scholar 

  12. Ma XC et al (2011) Social isolation-induced aggression potentiates anxiety and depressive-like behavior in male mice subjected to unpredictable chronic mild stress. PLoS One 6(6):e20955

    Article  PubMed  CAS  Google Scholar 

  13. Moy SS et al (2004) Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav 3(5):287–302

    Article  PubMed  CAS  Google Scholar 

  14. Amaral DG (2002) The primate amygdala and the neurobiology of social behavior: implications for understanding social anxiety. Biol Psychiatry 51(1):11–17

    Article  PubMed  Google Scholar 

  15. Miczek KA, Yoshimura H (1982) Disruption of primate social behavior by d-amphetamine and cocaine: differential antagonism by antipsychotics. Psychopharmacology (Berl) 76(2):163–171

    Article  CAS  Google Scholar 

  16. Bambini-Junior V et al (2011) Animal model of autism induced by prenatal exposure to valproate: behavioral changes and liver parameters. Brain Res 1408:8–16

    Article  PubMed  CAS  Google Scholar 

  17. Qin M et al (2011) A mouse model of the fragile X premutation: effects on behavior, dendrite morphology, and regional rates of cerebral protein synthesis. Neurobiol Dis 42(1):85–98

    Article  PubMed  CAS  Google Scholar 

  18. Waltereit R et al (2011) Epilepsy and Tsc2 haploinsufficiency lead to autistic-like social deficit behaviors in rats. Behav Genet 41(3):364–372

    Article  PubMed  Google Scholar 

  19. Lipina TV et al (2011) Genetic and pharmacological evidence for schizophrenia-related Disc1 interaction with GSK-3. Synapse 65(3):234–248

    Article  PubMed  CAS  Google Scholar 

  20. Williams NM et al (2010) Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: a genome-wide analysis. Lancet 376(9750):1401–1408

    Article  PubMed  CAS  Google Scholar 

  21. Buske C, Gerlai R (2011) Shoaling develops with age in Zebrafish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry 35:1409–1415

    Article  PubMed  Google Scholar 

  22. Buske C, Gerlai R (2011) Early embryonic ethanol exposure impairs shoaling and the dopaminergic and serotoninergic systems in adult zebrafish. Neurotoxicol Teratol 33:698–707

    Article  PubMed  CAS  Google Scholar 

  23. Grossman L et al (2010) Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res 214(2):277–284

    Article  PubMed  CAS  Google Scholar 

  24. Riehl R et al (2011) Behavioral and physiological effects of acute ketamine exposure in adult zebrafish. Neurotoxicol Teratol 33:658–667

    Article  PubMed  CAS  Google Scholar 

  25. Krause J et al (2000) The social organization of fish shoals: a test of the predictive power of laboratory experiments for the field. Biol Rev Camb Philos Soc 75(4):477–501

    PubMed  CAS  Google Scholar 

  26. Wright D et al (2006) QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio). Behav Genet 36(2):271–284

    Article  PubMed  Google Scholar 

  27. Wright D et al (2003) Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio). Naturwissenschaften 90(8):374–377

    Article  PubMed  CAS  Google Scholar 

  28. Moretz JA, Martins EP, Robison BD (2007) The effects of early and adult social environment on boldness and aggression in zebrafish (Danio rerio). Exp Biol Fishes 80(1):91–101

    Article  Google Scholar 

  29. Oliveira RF, Silva JF, Simoes JM (2011) Fighting zebrafish: characterization of aggressive behavior and winner-loser effects. Zebrafish 8(2):73–81

    Article  PubMed  Google Scholar 

  30. Grossman L et al (2011) Effects of piracetam on behavior and memory in adult zebrafish. Brain Res Bull 85(1–2):58–63

    Article  PubMed  CAS  Google Scholar 

  31. Engeszer RE, Ryan MJ, Parichy DM (2004) Learned social preference in zebrafish. Curr Biol 14(10):881–884

    Article  PubMed  CAS  Google Scholar 

  32. Reyhanian N et al (2011) 17alpha-Ethinyl estradiol affects anxiety and shoaling behavior in adult male zebra fish (Danio rerio). Aquat Toxicol 105(1–2):41–48

    Article  PubMed  CAS  Google Scholar 

  33. Ward AJ et al (2008) Scents and scents-ability: pollution disrupts chemical social recognition and shoaling in fish. Proc Biol Sci 275(1630):101–105

    Article  PubMed  Google Scholar 

  34. Mc RS, Bradner J (1998) The influence of body coloration on shoaling preferences in fish. Anim Behav 56(3):611–615

    Article  Google Scholar 

  35. Kurta A, Palestis BG (2010) Effects of ethanol on the shoaling behavior of zebrafish (Danio rerio). Dose Response 8(4):527–533

    Article  PubMed  CAS  Google Scholar 

  36. Lachlan RF, Crooks L, Laland KN (1998) Who follows whom? Shoaling preferences and social learning of foraging information in guppies. Anim Behav 56(1):181–190

    Article  PubMed  Google Scholar 

  37. Fukuda H et al (2010) Ontogenetic changes in schooling behaviour during larval and early juvenile stages of Pacific bluefin tuna Thunnus orientalis. J Fish Biol 76(7):1841–1847

    Article  PubMed  CAS  Google Scholar 

  38. Brierley AS, Cox MJ (2010) Shapes of krill swarms and fish schools emerge as aggregation members avoid predators and access oxygen. Curr Biol 20(19):1758–1762

    Article  PubMed  CAS  Google Scholar 

  39. Wright D, Krause J (2006) Repeated measures of shoaling tendency in zebrafish (Danio rerio) and other small teleost fishes. Nat Protoc 1(4):1828–1831

    Article  PubMed  CAS  Google Scholar 

  40. Speedie N, Gerlai R (2008) Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav Brain Res 188(1):168–177

    Article  PubMed  CAS  Google Scholar 

  41. Miller N, Gerlai R (2007) Quantification of shoaling behaviour in zebrafish (Danio rerio). Behav Brain Res 184(2):157–166

    Article  PubMed  Google Scholar 

  42. Naert A, Callaerts-Vegh Z, D’Hooge R (2011) Nocturnal hyperactivity, increased social novelty preference and delayed extinction of fear responses in post-weaning socially isolated mice. Brain Res Bull 85:354–362

    Article  PubMed  Google Scholar 

  43. Lukas M et al (2011) The neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance in rats and mice. Neuropsychopharmacology 36:2159–2168

    Article  PubMed  CAS  Google Scholar 

  44. Desjardins JK, Fernald RD (2010) What do fish make of mirror images? Biol Lett 6(6):744–747

    Article  PubMed  Google Scholar 

  45. Tinbergen N (1951) The study of instinct. Oxford University Press, New York, p 228

    Google Scholar 

  46. Moretz AA, Martins EP, Robinson BD (2007) Behavioral syndromes and the evolution of correlated behavior in zebrafish. Behav Ecol 3:556–562

    Article  Google Scholar 

  47. Gerlai R et al (2000) Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67(4):773–782

    Article  PubMed  CAS  Google Scholar 

  48. Dlugos CA, Brown SJ, Rabin RA (2011) Gender differences in ethanol-induced behavioral sensitivity in zebrafish. Alcohol 45(1):11–18

    Article  PubMed  CAS  Google Scholar 

  49. Lopez Patino MA et al (2008) Gender differences in zebrafish responses to cocaine withdrawal. Physiol Behav 95(1–2):36–47

    Article  PubMed  CAS  Google Scholar 

  50. Filby AL et al (2010) Unravelling the neurophysiological basis of aggression in a fish model. BMC Genomics 11:498

    Article  PubMed  Google Scholar 

  51. Gumm JM, Snekser JL, Iovine MK (2009) Fin-mutant female zebrafish (Danio rerio) exhibit differences in association preferences for male fin length. Behav Processes 80(1):35–38

    Article  PubMed  Google Scholar 

  52. Snekser JL et al (2006) Aggregation behavior in wildtype and transgenic zebrafish. Ethology 112(2):181–187

    Article  Google Scholar 

  53. Oswald ME, Robinson BD (2008) Strain specific alteration of zebrafish feeding behavior in response to aversive stimuli. Can J Zool 86:1085–1094

    Article  PubMed  Google Scholar 

  54. Buske C, Gerlai R (2012) Maturation of shoaling behavior is accompanied by changes in the dopaminergic and serotoninergic systems in zebrafish. Dev Psychobiol 54:28–35

    Article  PubMed  CAS  Google Scholar 

  55. Marks C et al (2005) Developmental environment alters conditional aggression in zebrafish. Copeia 4:901–908

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by Tulane University Intramural funds, Zebrafish Neuroscience Research Consortium (ZNRC), LA Board of Regents P-Fund, and NIDA SOAR R03 (DA030900-02) grant to AVK. The authors thank Matthew Singer (University of Idaho) for his help with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan V. Kalueff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pham, M. et al. (2012). Assessing Social Behavior Phenotypes in Adult Zebrafish: Shoaling, Social Preference, and Mirror Biting Tests. In: Kalueff, A., Stewart, A. (eds) Zebrafish Protocols for Neurobehavioral Research. Neuromethods, vol 66. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-597-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-597-8_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-596-1

  • Online ISBN: 978-1-61779-597-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics