Skip to main content

Injection of Adeno-Associated Virus Containing Optogenetic and Chemogenetic Probes into the Neonatal Mouse Brain

  • Protocol
  • First Online:
Basic Neurobiology Techniques

Part of the book series: Neuromethods ((NM,volume 152))

Abstract

Optogenetics and chemogenetics are neuromodulation techniques used to study neuronal pathways. Viral vectors containing optogenetic or chemogenetic probes require at least a week after injection to produce effective expression levels in neurons. Therefore, injections need to be done in neonatal mice to enable experiments that require mice younger than 30 days of age. Here, we describe a protocol for performing surgery on neonatal mice and brain injection of a viral vector. The procedure utilizes cryoanesthesia and a pressure injector with a micropipette that can be directly injected through the skull of neonatal mice. Compared to other approaches, this protocol is relatively easy to implement and takes only minutes to perform, additionally allowing for increased numbers of injections. In the examples shown in this chapter, viral vectors were successfully delivered into the auditory cortex and the hippocampus as indicated by labeled expression of the optogenetic/chemogenetic probes. This technique provides a method for investigators to perform surgical injections and optogenetic/chemogenetic experiments in neonatal mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mattis J, Tye KM, Ferenczi EA, Ramakrishnan C, O’Shea DJ, Prakash R, Gunaydin LA, Hyun M, Fenno LE, Gradinaru V, Yizhar O, Deisseroth D (2012) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9(2):159–172

    Article  CAS  Google Scholar 

  2. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    Article  CAS  Google Scholar 

  3. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446(7136):633–639

    Article  CAS  Google Scholar 

  4. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Moriomoto TK, Chuong AS, Carpenter EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong GK, Boyden ES (2014) Independent optical excitation of distinct neural populations. Nat Methods 11(3):338–346

    Article  CAS  Google Scholar 

  5. Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai L, Moore CI (2010) Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat Protoc 5(2):247–254

    Article  CAS  Google Scholar 

  6. Beltramo R, D’Urso G, Dal Maschio M, Farisello P, Bovetti S, Clovis Y, Lassi G, Tucci V, Tonelli DDP, Fellin T (2013) Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nat Neurosci 16(2):227–234

    Article  CAS  Google Scholar 

  7. Roth BL (2016) DREADDs for neuroscientists. Neuron 89(4):683–694

    Article  CAS  Google Scholar 

  8. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci 104(12):5163–5168

    Article  Google Scholar 

  9. Armbruster B, Roth B (2005) Creation of designer biogenic amine receptors via directed molecular evolution. In: Neuropsychopharmacology, vol 30. Nature Publishing Group, London, pp S265–S265

    Google Scholar 

  10. Alexander GM, Rogan SC, Abbas AI, Armbruster BN, Pei Y, Allen JA, Nonneman RJ, Hartmann J, Moy SS, Nicolelis MA, McNamara JO, Roth BL (2009) Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63(1):27–39

    Article  CAS  Google Scholar 

  11. Vardy E, Robinson JE, Li C, Olsen RH, DiBerto JF, Giguere PM, Sassano FM, Huang X, Zhu H, Urban DJ, White KL, Rittiner JE, Crowley NA, Pleil KE, Mazzone CM, Mosier PD, Song J, Kash TL, Malanga CJ, Krashes MJ, Roth BL (2015) A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86(4):936–946

    Article  CAS  Google Scholar 

  12. Stachniak TJ, Ghosh A, Sternson SM (2014) Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus → midbrain pathway for feeding behavior. Neuron 82(4):797–808

    Article  CAS  Google Scholar 

  13. Allen JA, Roth BL (2011) Strategies to discover unexpected targets for drugs active at G protein–coupled receptors. Annu Rev Pharmacol Toxicol 51:117–144

    Article  CAS  Google Scholar 

  14. Ferguson SM, Phillips PE, Roth BL, Wess J, Neumaier JF (2013) Direct-pathway striatal neurons regulate the retention of decision-making strategies. J Neurosci 33(28):11668–11676

    Article  CAS  Google Scholar 

  15. Roth BL, Craigo SC, Choudhary MS, Uluer A, Monsma FJ, Shen Y et al (1994) Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J Pharmacol Exp Ther 268(3):1403–1410

    CAS  PubMed  Google Scholar 

  16. Chavkin C, Sud S, Jin W, Stewart J, Zjawiony JK, Siebert DJ, Toth BA, Hufeisen SJ, Roth BL (2004) Salvinorin A, an active component of the hallucinogenic sage Salvia divinorum is a highly efficacious κ-opioid receptor agonist: structural and functional considerations. J Pharmacol Exp Ther 308(3):1197–1203

    Article  CAS  Google Scholar 

  17. Jann MW, Lam YW, Chang WH (1994) Rapid formation of clozapine in guinea-pigs and man following clozapine-N-oxide administration. Archiv Int Pharmacodyn Ther 328(2):243–250

    CAS  Google Scholar 

  18. Chen X, Choo H, Huang XP, Yang X, Stone O, Roth BL, Jin J (2015) The first structure–activity relationship studies for designer receptors exclusively activated by designer drugs. ACS Chem Nerosci 6(3):476–484

    Article  CAS  Google Scholar 

  19. Zhu H, Pleil KE, Urban DJ, Moy SS, Kash TL, Roth BL (2014) Chemogenetic inactivation of ventral hippocampal glutamatergic neurons disrupts consolidation of contextual fear memory. Neuropsychopharmacology 39(8):1880–1892

    Article  CAS  Google Scholar 

  20. Scofield MD, Boger HA, Smith RJ, Li H, Haydon PG, Kalivas PW (2015) Gq-DREADD selectively initiates glial glutamate release and inhibits cue-induced cocaine seeking. Biol Psychiatry 78(7):441–451

    Article  CAS  Google Scholar 

  21. Peñagarikano O, Lázaro MT, Lu XH, Gordon A, Dong H, Lam HA, Peles E, Maidment NT, Murphy NP, Yang XW, Golshani P, Geschwind DH (2015) Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Sci Transl Med 7(271):271ra8–271ra8

    Article  Google Scholar 

  22. Roth BL, Marshall FH (2012) NOBEL 2012 chemistry: studies of a ubiquitous receptor family. Nature 492(7427):57–57

    Article  CAS  Google Scholar 

  23. Samama P, Cotecchia S, Costa T, Lefkowitz RJ (1993) A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 268(7):4625–4636

    CAS  PubMed  Google Scholar 

  24. Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS, Maratos-Flier E, Roth BL, Lowell BB (2011) Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 121(4):1424

    Article  CAS  Google Scholar 

  25. Phifer CB, Terry LM (1986) Use of hypothermia for general anesthesia in preweanling rodents. Physiol Behav 38(6):887–890

    Article  CAS  Google Scholar 

  26. National Research Council (2003) Guidelines for the care and use of mammals in neuroscience and behavioral research. National Academies Press, Washington, DC

    Google Scholar 

  27. Kim JY, Grunke SD, Levites Y, Golde TE, Jankowsky JL (2013) Intracerebroventricular viral injection of the neonatal mouse brain for persistent and widespread neuronal transduction. J Vis Exp (91):51863–51863

    Google Scholar 

  28. Watson DJ, Passini MA, Wolfe JH (2005) Transduction of the choroid plexus and ependyma in neonatal mouse brain by vesicular stomatitis virus glycoprotein-pseudotyped lentivirus and adeno-associated virus type 5 vectors. Hum Gene Ther 16(1):49–56

    Article  CAS  Google Scholar 

  29. Chakrabarty P, Rosario A, Cruz P, Siemienski Z, Ceballos-Diaz C, Crosby K, Jansen K, Borchelt DR, Kim J, Jankowsky JL, Golde TE (2013) Capsid serotype and timing of injection determines AAV transduction in the neonatal mice brain. PLoS One 8(6):e67680

    Article  CAS  Google Scholar 

  30. Ibrahim BA, Wang H, Lesicko AM, Bucci B, Paul K, Llano DA (2017) Effect of temperature on FAD and NADH-derived signals and neurometabolic coupling in the mouse auditory and motor cortex. Pflügers Arch 469(12):1631–1649

    Article  CAS  Google Scholar 

  31. Cruikshank SJ, Rose HJ, Metherate R (2002) Auditory thalamocortical synaptic transmission in vitro. J Neurophysiol 87(1):361–384

    Article  Google Scholar 

  32. Stebbings KA, Choi HW, Ravindra A, Caspary DM, Turner JG, Llano DA (2016) Ageing-related changes in GABAergic inhibition in mouse auditory cortex, measured using in vitro flavoprotein autofluorescence imaging. J Physiol 594(1):207–221

    Article  CAS  Google Scholar 

  33. Optogenetics Material Request/FAQ (n.d.) Optogenetics Resource Center. https://web.stanford.edu/group/dlab/optogenetics/request_dna.html

  34. Davis HE, Morgan JR, Yarmush ML (2002) Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophys Chem 97(2):159–172

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by research grant DC013073 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Llano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huynh, N.C., Ibrahim, B.A., Lee, C.M., Key, M.N., Llano, D.A. (2020). Injection of Adeno-Associated Virus Containing Optogenetic and Chemogenetic Probes into the Neonatal Mouse Brain. In: Wright, N. (eds) Basic Neurobiology Techniques . Neuromethods, vol 152. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9944-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9944-6_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9943-9

  • Online ISBN: 978-1-4939-9944-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics