Skip to main content

Instability of Solitons in the 2d Cubic Zakharov-Kuznetsov Equation

  • Chapter
  • First Online:
Nonlinear Dispersive Partial Differential Equations and Inverse Scattering

Part of the book series: Fields Institute Communications ((FIC,volume 83))

Abstract

We consider the two dimensional generalization of the Korteweg-de Vries (KdV) equation, the generalized Zakharov-Kuznetsov (ZK) equation \(u_t + \partial _{x_1}(\Delta u + u^p) = 0, (x_1,x_2) \in \mathbb R^2\). It is known that solitons are stable for nonlinearities p < 3 and unstable for p > 3, which was established by de Bouard (Proc R Soc Edinb Sect A 126:89–112, 1996) generalizing the arguments of Bona et al. (Proc R Soc Lond 411:395–412, 1987) for the gKdV equation. The L 2-critical case with p = 3 has been open and in this paper we prove that solitons are unstable in the cubic ZK equation. This matches the situation with the critical gKdV equation, proved in 2001 by Martel and Merle (Geom Funct Anal 11:74–123, 2001). While the general strategy follows (Martel and Merle, Geom Funct Anal 11:74–123, 2001), the two dimensional case creates several difficulties and to deal with them, we design a new virial-type quantity, revisit monotonicity properties and, most importantly, develop new pointwise decay estimates, which can be useful in other contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The nonlinearity in such gZK equation should be understood as \(\partial _{x_1}(|u|{ }^{p-1} u)\).

References

  1. D. Bhattacharya, L. G. Farah, and S. Roudento, Global well-posedness for low regularity data in the 2d modified Zakharov-Kuznetsov equation, arxiv.org preprint. arXiv:1906.05822.

    Google Scholar 

  2. J.L. Bona, P. Souganidis and W. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. London 411 (1987), 395–412.

    Article  MathSciNet  Google Scholar 

  3. S.-M. Chang, S. Gustafson, K. Nakanishi and T.-P. Tsai, Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal. 39 (2007/08), no. 4, 1070–1111.

    Article  MathSciNet  Google Scholar 

  4. V. Combet, Construction and characterization of solutions converging to solitons for supercritical gKdV equations, Differential Integral Equations 23 (2010), no. 5–6, 513–568.

    MathSciNet  MATH  Google Scholar 

  5. R. Côte, C. Muñoz, D. Pilod, and G. Simpson, Asymptotic Stability of high-dimensional Zakharov-Kuznetsov solitons, Arch. Ration. Mech. Anal. 220 (2016), no. 2, 639–710.

    Article  MathSciNet  Google Scholar 

  6. de Bouard, A. Stability and instability of some nonlinear dispersive solitary waves in higher dimension, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), no. 1, 89–112.

    Article  MathSciNet  Google Scholar 

  7. T. Duyckaerts, J. Holmer and S. Roudenko, Scattering for the non-radial 3d cubic nonlinear Schrödinger equation, Math. Res. Lett. 15 (2008), no. 6, 1233–1250.

    Article  MathSciNet  Google Scholar 

  8. A. V. Faminskii, The Cauchy problem for the Zakharov-Kuznetsov equation, Differ. Equ. 31 (1995), 1002–1012.

    MathSciNet  Google Scholar 

  9. L. G. Farah, J. Holmer and S. Roudenko, Instability of solitons - revisited, I: the critical gKdV equation, to appear in Contemp. Math., Amer. Math. Soc., arxiv.org preprint arXiv:1711.03187.

    Google Scholar 

  10. L. G. Farah, J. Holmer and S. Roudenko, Instability of solitons - revisited, II: the supercritical Zakharov-Kuznetsov equation, to appear in Contemp. Math., Amer. Math. Soc., arxiv.org preprint arXiv:1711.03207.

    Google Scholar 

  11. L. G. Farah, J. Holmer, S. Roudenko and Kai Yang, Blow-up in finite or infinite time of the 2D cubic Zakharov-Kuznetsov equation, arxiv.org preprint arXiv:1810.05121.

    Google Scholar 

  12. L. G. Farah, F. Linares and A. Pastor, A note on the 2d generalized Zakharov-Kuznetsov equation: Local, global, and scattering results, J. Differential Equations 253 (2012), 2558–2571.

    Article  MathSciNet  Google Scholar 

  13. G. Fonseca and M. Pachón, Well-posedness for the two dimensional generalized Zakharov-Kuznetsov equation in anisotropic weighted Sobolev spaces, J. Math. Anal. Appl. 443 (2016), no. 1, 566–584.

    Article  MathSciNet  Google Scholar 

  14. M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry, J. Funct. Anal. 74 (1987), 160–197.

    Article  MathSciNet  Google Scholar 

  15. A. Grünrock and S. Herr, The Fourier restriction norm method for the Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst. 34 (2014), no. 5, 2061–2068.

    Article  MathSciNet  Google Scholar 

  16. D. Han-Kwan, From Vlasov-Poisson to Korteweg-de Vries and Zakharov-Kuznetsov, Comm. Math. Phys., 324 (2013), no. 3, 961–993.

    Article  MathSciNet  Google Scholar 

  17. J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3d cubic nonlinear Schrödinger equation, Comm. Math. Phys. 282 (2008), no. 2, 435–467.

    Article  MathSciNet  Google Scholar 

  18. M.K. Kwong, Uniqueness of positive solutions of Δu − u + u p = 0 in \(\mathbb {R}^n\), Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266.

    Google Scholar 

  19. D. Lannes, F. Linares and J.-C. Saut, The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, Studies in phase space analysis with applications to PDEs, 181–213, Progr. Nonlinear Differential Equations Appl., 84, Birkhäuser/Springer, New York, 2013.

    Google Scholar 

  20. F. Linares and A. Pastor, Well-posedness for the two-dimensional modified Zakharov–Kuznetsov equation, SIAM J. Math Anal. 41 (2009), 1323–1339.

    Article  MathSciNet  Google Scholar 

  21. F. Linares and A. Pastor, Local and global well-posedness for the 2d generalized Zakharov-Kuznetsov equation, J. Funct. Anal. 260 (2011), 1060–1085.

    Article  MathSciNet  Google Scholar 

  22. M. Maris, Existence of nonstationary bubbles in higher dimensions, J. Math. Pures Appl. (9) 81 (2002), no. 12, 1207–1239.

    Google Scholar 

  23. Y. Martel and F. Merle, Instability of solitons for the critical gKdV equation, GAFA, Geom. Funct. Anal., 11 (2001), 74–123.

    Article  MathSciNet  Google Scholar 

  24. Y. Martel and F. Merle, Blow up in finite time and dynamics of blow up solutions for theL 2-critical generalized KdV equation, J. Amer. Math. Soc. 15 (2002), 617–664.

    Google Scholar 

  25. S. Melkonian and S. A. Maslowe, Two dimensional amplitude evolution equations for nonlinear dispersive waves on thin films, Phys. D 34 (1989), 255–269.

    Article  MathSciNet  Google Scholar 

  26. F. Merle, Existence of blow-up solutions in the energy space for the critical generalized Korteweg-de Vries equation, J. Amer. Math. Soc. 14 (2001), 555–578.

    Article  MathSciNet  Google Scholar 

  27. L. Molinet and D. Pilod, Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. H. Poincaré An. Non Lin., 32 (2015), 347–371.

    Article  MathSciNet  Google Scholar 

  28. S. Monro and E. J. Parkes, The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions, J. Plasma Phys. 62 (3) (1999), 305–317.

    Article  Google Scholar 

  29. S. Monro and E. J. Parkes, Stability of solitary-wave solutions to a modified Zakharov-Kuznetsov equation, J. Plasma Phys. 64 (3) (2000), 411–426.

    Article  Google Scholar 

  30. F. Ribaud and S. Vento, A note on the Cauchy problem for the 2d generalized Zakharov-Kuznetsov equations, C. R. Math. Acad. Sci. Paris 350 (2012), no. 9–10, 499–503.

    Article  MathSciNet  Google Scholar 

  31. M. Schechter, Spectra of Partial Differential Operator, North Holland, 1986.

    MATH  Google Scholar 

  32. M. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), no. 3, 472–491.

    Article  MathSciNet  Google Scholar 

  33. Zakharov V. E. and Kuznetsov E. A., On three dimensional solitons, Zhurnal Eksp. Teoret. Fiz, 66, 594–597 [in Russian]; Sov. Phys JETP, vol. 39, no. 2 (1974), 285–286.

    Google Scholar 

Download references

Acknowledgements

Most of this work was done when the first author was visiting GWU in 2016–2017 under the support of the Brazilian National Council for Scientific and Technological Development (CNPq/Brazil), for which all authors are very grateful as it boosted the energy into the research project. S.R. would like to thank IHES and the organizers for the excellent working conditions during the trimester program “Nonlinear Waves” in May–July 2016. L.G.F. was partially supported by CNPq, CAPES and FAPEMIG/Brazil. J.H. was partially supported by the NSF grant DMS-1500106. S.R. was partially supported by the NSF CAREER grant DMS-1151618/1929029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Roudenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farah, L.G., Holmer, J., Roudenko, S. (2019). Instability of Solitons in the 2d Cubic Zakharov-Kuznetsov Equation. In: Miller, P., Perry, P., Saut, JC., Sulem, C. (eds) Nonlinear Dispersive Partial Differential Equations and Inverse Scattering. Fields Institute Communications, vol 83. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9806-7_6

Download citation

Publish with us

Policies and ethics