Skip to main content

Yeasts in Botrytized Wine Making

  • Chapter
  • First Online:
Yeasts in the Production of Wine

Abstract

The fungus Botrytis cinerea attacks ripening grapes in humid conditions and usually causes devastating grey rot. If humidity fluctuates (e.g. humid nights alternate with dry sunny days), the infected grapes develop a different type of rot, the benevolent “noble rot” (“pourriture noble”, Edelfäule”). Proper humidity fluctuation requires specific microclimatic conditions that are characteristic of terroirs of specific geographical locations. Many of the world’s greatest sweet wines, the so-called botrytized or Botrytis-affected wines are crafted from shriveled, mold-covered nobly rotten grapes. Upon Botrytis invasion, the berries are usually co-colonized by bacteria and yeasts whose activities modify the chemical composition of the grape juice. These microorganisms commence fermentation within the berries before harvest. The pre-harvest grape microbiota is particularly rich in non-Saccharomyces yeasts. These yeasts form then the starting microflora of the fermenting must but are gradually overgrown by strains of S. cerevisiae and S. uvarum. Some of them can persist throughout the fermentation-vinification process up to the aging phase and thus can have significant impact on the quality of the wine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akau, H. L., Miller, K. M., Sabeh, N. C., Allen, R. G., Block, D. E., & Vander Gheynst, J. S. (2004). Production of Botrytis cinerea for potential introduction into a vineyard. Bioresource Technology, 92, 41–48.

    Article  CAS  PubMed  Google Scholar 

  • Aleu, J., & Collado, G. I. (2001). Biotransformations by Botrytis species. Journal of Molecular Catalysis B: Enzymatic, 13, 77–93.

    Article  CAS  Google Scholar 

  • Alexandre, H., & Charpentier, C. (1998). Biochemical aspects of stuck and sluggish fermentation in grape must. Journal of Industrial Microbiology & Biotechnology, 21, 20–27.

    Article  CAS  Google Scholar 

  • Allen, H. W. (1928). The romance of tokay. London: Berry Bross.

    Google Scholar 

  • Andorra, I., Berradre, M., Rozes, N., Mas, A., Guillamo’n, J. M., & Esteve-Zarzoso, B. (2010). Effect of pure and mixed cultures of the main wine yeast species on grape must fermentations. European Food Research and Technology, 231, 215–224.

    Article  CAS  Google Scholar 

  • Antunovics, Z., Csoma, H., & Sipiczki, M. (2003). Molecular and genetic analysis of the yeast flora of botrytized Tokaj wines. Bulletin de l’OIV (Office International de la Vigne et du Vin Paris) 76: 380–397.

    Google Scholar 

  • Antunovics, Z., Irinyi, L., & Sipiczki, M. (2005a). Combined application of methods to taxonomic identification of Saccharomyces strains in fermenting botrytized grape must. Journal of Applied Microbiology, 98, 971–979.

    Article  CAS  PubMed  Google Scholar 

  • Antunovics, Z., Nguyen, H.-V., Gaillardin, C., & Sipiczki, M. (2005b). Gradual genome stabilisation by progressive reduction of the S. uvarum genome in an interspecific hybrid with S. cerevisiae. FEMS Yeast Research, 5, 1141–1150.

    Article  CAS  PubMed  Google Scholar 

  • Azzolini, M., Tosi, E., Faccio, S., Lorenzini, M., Torriani, S., & Zapparoli, G. (2013). Selection of Botrytis cinerea and Saccharomyces cerevisiae strains for the improvement and valorization of Italian passito style wines. FEMS Yeast Research, 13, 540–552.

    Article  CAS  PubMed  Google Scholar 

  • Barata, A., Malfeito-Ferreira, M., & Loureiro, V. (2012). The microbial ecology of wine grape berries. International Journal of Food Microbiology, 153, 243–259.

    CAS  PubMed  Google Scholar 

  • Barbe, J.-C., de Revel, G., Joyeux, A., Bertrand, A., & Lonvaud-Funel, A. (2001). Role of botrytized grape microorganisms in SO2 binding phenomena. Journal of Applied Microbiology, 90, 34–42.

    Article  CAS  PubMed  Google Scholar 

  • Bataillon, M., Rico, A., Sablayrolles, J. M., Salmon, J. M., & Barre, P. (1996). Early thiamine assimilation by yeasts under enological conditions: Impact on alcoholic fermentation kinetics. Journal of Fermentation and Bioengineering, 82, 145–150.

    Article  CAS  Google Scholar 

  • Bely, M., Rinaldi, A., & Dubourdieu, D. (2003). Influence of asssimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. Journal of Bioscience and Bioengineering, 96, 507–512.

    Article  CAS  PubMed  Google Scholar 

  • Bely, M., Masneuf-Pomerede, I., & Dubourdieu, D. (2005). Influence of physiological state of inoculum on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. Journal International des sciences de la vigne et du vin, 39, 191–197.

    CAS  Google Scholar 

  • Bely, M., Stoeckle, P., Masneuf-Pomarede, I., & Dubourdieu, D. (2008). Impact of mixed Torulaspora delbrueckiiSaccharomyces cerevisiae culture on high-sugar fermentation. International Journal of Food Microbiology, 122, 312–320.

    Article  CAS  PubMed  Google Scholar 

  • Benda, I. (1988). Untersuchungen zur Frage der Fruktofilie und Osmotoleranz bei der Hefeart Candida stellata (syn. Torulopsis stellata). Mitt Klosterneuburg, 38, 60–65.

    CAS  Google Scholar 

  • Bene, Z., & Magyar, I. (2002). Study of the yeast and mould biota of the botrytized grapes in Tokaj region in two years. International Journal of Horticultural Science, 8, 61–65.

    Article  Google Scholar 

  • Bene, Z., & Magyar, I. (2004). Characterization of yeast and mould biota of botrytized grapes in Tokaj wine region in the years 2000 and 2001. Acta Alimentaria, 33, 259–267.

    Article  Google Scholar 

  • Berthels, N. J., Cordero Otero, R. R., Bauer, F. F., Thevelein, J. M., & Pretorius, I. S. (2004). Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Research, 4, 683–689.

    Article  CAS  PubMed  Google Scholar 

  • Bisson, L. F. (1999). Stuck and sluggish fermentations. American Journal of Enology and Viticulture, 50, 107–119.

    CAS  Google Scholar 

  • Bisson, L. F., & Joseph, C. M. L. (2009). Yeasts. In H. König, G. Unden, & J. Fröhlich (Eds.), Biology of microorganisms on grapes, in must and in wine (pp. 45–60). Berlin: Springer-Verlag.

    Google Scholar 

  • Blanco-Ulate, B., Amrine, K. C., Collins, T. S., Rivero, R. M., Vicente, A. R., Morales-Cruz, A., Doyle, C. L., Ye, Z., Allen, G., Heymann, H., Ebeler, S. E., & Cantu, D. (2015). Developmental and metabolic plasticity of white-skinned grape berries in response to Botrytis cinerea during noble rot. Plant Physiology, 169, 2422–2443.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bokulich, N. A., Hwang, C. F., Liu, S., Boundy-Mills, K. L., & Mills, D. A. (2012a). Profiling the yeast communities of wine fermentations using terminal restriction fragment length polymorphism analysis. American Journal of Enology and Viticulture, 63, 185–194.

    Article  CAS  Google Scholar 

  • Bokulich, N. A., Joseph, C. M., Allen, G., Benson, A. K., & Mills, D. A. (2012b). Next-generation sequencing reveals significant bacterial diversity of botrytized wine. PLoS One, 7, e36357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Börlin, M., Venet, P., Claisse, O., Salin, F., Legras, J. L., & Masneuf-Pomarede, I. (2016). Cellar-associated Saccharomyces cerevisiae population structure revealed high-level diversity and perennial persistence at sauternes wine estates. Applied and Environmental Microbiology, 82, 2909–2918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brysch-Herzberg, M., & Seidel, M. (2015). Yeast diversity on grapes in two German wine growing regions. International Journal of Food Microbiology, 214, 137–144.

    Article  CAS  PubMed  Google Scholar 

  • Cabral, S., Prista, C., Loureiro-Dias, M. C., & Leandro, M. J. (2015). Occurrence of FFZ genes in yeasts and correlation with fructophilic behaviour. Microbiology, 161, 2008–2018.

    Article  CAS  PubMed  Google Scholar 

  • Charoenchai, C., Fleet, G. H., & Henschke, P. A. (1998). Effects of temperature, pH, and sugar concentration on the growth rates and cell biomass of wine yeasts. American Journal of Enology and Viticulture, 49, 283–288.

    CAS  Google Scholar 

  • Ciani, M., Comitini, F., Mannazzu, I., & Domizio, P. (2010). Controlled mixed culture fermentation: A new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Research, 10, 123–133.

    Article  CAS  PubMed  Google Scholar 

  • Cocolin, L., & Mills, D. A. (2003). Wine yeast inhibition by Sulphur dioxide: A comparison of culture-dependent and independent methods. American Journal of Enology and Viticulture, 54, 125–130.

    CAS  Google Scholar 

  • Cocolin, L., Heisy, A., & Mills, D. A. (2001). Direct identification of the indigenous yeasts in commercial wine fermentations. American Journal of Enology and Viticulture, 52, 49–53.

    CAS  Google Scholar 

  • Combina, M., Elia, A., Mercado, L., Catania, C., Ganga, A., & Martinez, C. (2005). Dynamics of indigenous yeast populations during spontaneous fermentation of wines from Mendoza, Argentina. International Journal of Food Microbiology, 99, 237–243.

    Article  CAS  PubMed  Google Scholar 

  • Cordero-Bueso, G., Arroyo, T., Serrano, A., Tello, J., Aporta, I., Velez, M. D., & Valero, E. (2011). Influence of the farming system and vine variety on yeast communities associated with grape berries. International Journal of Food Microbiology, 145, 132–139.

    Article  PubMed  Google Scholar 

  • Csoma, H., & Sipiczki, M. (2003). Investigation of the yeast microflora of “Tokaj essence” 1st FEMS Congress of European Microbiologists, Ljubljana, Abstract Book p. 213.

    Google Scholar 

  • Csoma, H., & Sipiczki, M. (2007). Taxonomic investigation of the yeast biota of botrytized crapes and “Essence” in the Tokaj wine region. 8th International Enology Symposium, Bordeaux, Book of Abstracts, p.: 174.

    Google Scholar 

  • Csoma, H., & Sipiczki, M. (2008). Taxonomic reclassification of Candida stellata strains reveals frequent occurrence of Candida zemplinina in wine fermentation. FEMS Yeast Research, 8, 328–336.

    Article  CAS  PubMed  Google Scholar 

  • Csoma, H., Acs-Szabo, L., Papp, L. A., & Sipiczki, M. (2018). Application of different markers and data-analysis tools to the examination of biodiversity can lead to different results: A case study with Starmerella bacillaris (synonym Candida zemplinina) strains. FEMS Yeast Research (in press), 18.

    Google Scholar 

  • Cuevas, O., & Hanson, J. R. (1977). Norbotryal acetate, a norsesquiterpenoid aldehyde from Botrytis cinerea. Phytochemistry, 16, 1061–1062.

    Article  CAS  Google Scholar 

  • Daniel, H. M., Lachance, M. A., & Kurtzman, C. P. (2014). On reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. Antonie Van Leeuwenhoek, 106, 67–84.

    Article  PubMed  Google Scholar 

  • Di Maio, S., Genna, G., Gandolfo, V., Amore, G., Ciaccio, M., & Oliva, D. (2012). Presence of Candida zemplinina in Sicilian musts and selection of a strain for wine mixed fermentations. South African Journal of Enology and Viticulture, 33, 80–87.

    Google Scholar 

  • Dittrich, H. H., Sponholz, W. R., & Kast, W. (1974). Vergleichende Untersuchungen von Mosten und Weinen aus gesunden und aus Botrytis-infizierten Traubenbeeren. I. Säurestoffwechsel, Zuckerstoffwechselprodukte, Leucoanthocyangehalte. Vitis, 13, 36–49.

    Google Scholar 

  • Dittrich, H. H., Sponholz, W. R., & Göbel, H. G. (1975). Vergleichende Untersuchungen von Mosten und Weinen aus gesunden und aus Botrytis-infizierten Traubenbeeren. II. Modelversuche zur Veränderungen des Mostes durch Botrytis-Infection und ihre Konsequenzen für die Nebenproduktbildung bei der Gärung. Vitis, 13, 336–347.

    Google Scholar 

  • Divol, B., & Lonvaud-Funel, A. (2005). Evidence for viable but nonculturable yeasts in Botrytis-affected wine. Journal of Applied Microbiology, 99, 85–93.

    Article  CAS  PubMed  Google Scholar 

  • Divol, B., Strehaiano, P., & Lonvaud-Funel, A. (2005). Effectiveness of dimethyldicarbonate to stop alcoholic fermentation in wine. Food Microbiology, 22, 169–178.

    Article  CAS  Google Scholar 

  • Divol, B., Miot-Sertier, C., & Lonvaud-Funel, A. (2006). Genetic characterization of strains of Saccharomyces cerevisiae responsible for “refermentation” in Botrytis-affected wines. Journal of Applied Microbiology, 100, 516–526.

    Article  CAS  PubMed  Google Scholar 

  • Doneche, B. J. (1993). Botrytized wines. In G. H. Fleet (Ed.), Wine microbiology and biotechnology (pp. 327–351). Philadelphia: Harwood Academic Publishers.

    Google Scholar 

  • Drysdale, G. S., & Fleet, G. H. (1989). The effect of acetic acid bacteria upon the growth and metabolism of yeast during the fermentation of grape juice. The Journal of Applied Bacteriology, 67, 471–481.

    Article  CAS  Google Scholar 

  • du Plessis, H. W., du Toit, M., Hoff, J. W., Hart, R. S., Ndimba, B. K., & Jolly, N. P. (2017). Characterisation of non-Saccharomyces yeasts using different methodologies and evaluation of their compatibility with malolactic fermentation. South African Journal of Enology and Viticulture, 38, 45–63.

    Article  Google Scholar 

  • Duarte, F. L., Pimentel, N. H., Teixeira, A., & Fonseca, A. (2012). Saccharomyces bacillaris is not a synonym of Candida stellata: Reinstatement as Starmerella bacillaris comb. nov. Antonie Van Leeuwenhoek, 102, 653–658.

    Article  CAS  PubMed  Google Scholar 

  • Dubourdieu, D. (1999). La vinification des vins liquoreux de pourriture noble. Rev Fr Oenologie, 176, 32–35.

    CAS  Google Scholar 

  • Duhail, C., Rousseau, S., l’Hyvernay, A., & Doneche, B. (1999). Nouvelles acquisitions concernant l’obtention d’une pourriture de qualité et la vinification de vendanges botrytisées. Revue Française d’Œnologie, 176, 28–31.

    Google Scholar 

  • Elad, Y., Williamson, B., Tudzynski, P., & Delen, N. (2004). Botrytis: biology, pathology and control. Bordrecht: Kluyver Academic Publisher.

    Google Scholar 

  • Englezos, V., Rantsiou, K., Torchio, F., Rolle, L., Gerbi, V., & Cocolin, L. (2015). Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: Physiological and molecular characterizations. International Journal of Food Microbiology, 199, 33–40.

    Article  CAS  PubMed  Google Scholar 

  • Fehlaber, H. W., Geipel, R., Mercker, H. J., Tschesche, R., & Welmar, K. (1974). Botrydial, ein Antibiotikum aus der Nährlösung des Pilzes Botrytis cinerea. Chemische Berichte, 107, 1720–1724.

    Article  Google Scholar 

  • Fleet, G. H. (1990). Which yeast species really conducts the fermentation? In P. J. Williams, D. M. Davidson, & T. H. Lee (Eds.), Proc 7th Aust Wine Ind Tech Conf Adelaide (pp. 153–156).

    Google Scholar 

  • Fleet, G. H., Lafon-Lafourcade, S., & Ribéreau-Gayon, P. (1984). Evolution of yeasts and lactic acid bacteria during fermentation and storage of Bordeaux wines. Applied and Environmental Microbiology, 48, 1034–1038.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fleet, G. H., Prakitchaiwattana, C., Beh, A. L., & Heard, G. (2002). The yeast ecology of wine grapes. In M. Ciani (Ed.), Biodiversity and biotechnology of wine yeasts (pp. 1–17). Kerala: Research Signpost.

    Google Scholar 

  • Francesca, N., Canale, D. E., Settanni, L., & Moschetti, G. (2012). Dissemination of wine-related yeasts by migratory birds. Environmental Microbiology Reports, 4, 105–112.

    Article  PubMed  Google Scholar 

  • Frezier, V., & Dubourdieu, D. (1992). Ecology of yeast strains Saccharomyces cerevisiae during spontaneous fermentation in Bordeaux winery. American Journal of Enology and Viticulture, 43, 375–380.

    Google Scholar 

  • Fugelsang, K. C. (1997). Wine microbiology. New York: Chapman and Hall.

    Book  Google Scholar 

  • Gafner, J., & Schütz, M. (1996). Impact of glucose-fructose ratio on stuck fermentations: Practical experiences to restart stuck fermentations. Wine-Wissenschaft, 51, 214–218.

    CAS  Google Scholar 

  • Gafner, J., Hoffmann-Boller, P., Porret, N. A., & Pulver, D. (2000). Restarting sluggish and stuck fermentations (2nd ed.). Cape Town: International Viticulture and Enology Congress.

    Google Scholar 

  • Gangl, H., Leitner, G., Tiefenbrunner, W., & Redl, H. (2004). Die Induktion der Edelfäule (Botrytis cinerea Pers.) mittels einer Sporensuspension im Freiland. Mitt Klosterneuburg, 54, 214–222.

    Google Scholar 

  • Gao, C., & Fleet, G. H. (1988). The effects of temperature and pH on ethanol tolerance of the wine yeasts Saccharomyces cerevisiae, Candida stellata and Kloeckera apiculata. The Journal of Applied Bacteriology, 65, 405–409.

    Article  CAS  Google Scholar 

  • Gottschalk, A. (1946). The mechanism of selective fermentation of D-fructose from invert sugar by sauternes yeast. The Biochemical Journal, 40, 621–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greger, M. (1881). Notes on the pure or natural wines of Hungary, their properties and uses. London: Max Gregor, Ltd.

    Google Scholar 

  • Guijo, S., Millan, C., & Ortega, J. M. (1986). Fermentative features of vinification and maturation yeast isolated in the Montilla-Moriles region of Southern Spain. Food Microbiology, 3, 133–142.

    Article  CAS  Google Scholar 

  • Holloway, P., Subden, R. E. (1991). Volatile metabolites produced in a Riesling must by wild yeasts. Canadian Institute of Food Science and Technology Journal, 24, 57–59.

    Article  CAS  Google Scholar 

  • Hong, Y. S., Cilindre, C., Liger-Belair, G., Jeandet, P., Hertkorn, N., & Schmitt-Kopplin, P. (2011). Metabolic influence of Botrytis cinerea infection in champagne base wine. Journal of Agricultural and Food Chemistry, 59, 7237–7245.

    Article  CAS  PubMed  Google Scholar 

  • Ingledew, W. M., & Kunkee, R. E. (1985). Factors influencing sluggish fermentations of grape juice. American Journal of Enology and Viticulture, 36, 65–75.

    CAS  Google Scholar 

  • Jackson, R. S. (2000). Wine science: Principle, practice, perception. San Diego: Academic.

    Google Scholar 

  • Jolly, N. P., Augustyn, O. P. H., & Pretorius, I. S. (2003). The effect of non-Saccharomyces yeasts on fermentation and wine quality. South African Journal of Enology and Viticulture, 24, 55–62.

    CAS  Google Scholar 

  • Jolly, N. P., Augustyn, O. P. H., & Pretorius, I. S. (2006). The role and use of non-Saccharomyces yeasts in wine production. South African Journal of Enology and Viticulture, 27, 15–39.

    CAS  Google Scholar 

  • Joyeux, A., Lafon-Lafourcade, S., & Ribereau-Gayon, P. (1984). Evolution of acetic acid bacteria during fermentation and storage of wine. Applied and Environmental Microbiology, 48, 153–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalmar, Z. P., Miklosy, E., Polos, V., & Kerenyi, Y. (1999). Les effets de la qualité des grains et les différents modes de vinification sur la constitution des vins d’aszu de Tokajhegyalja. Œnologie 99, 6e Symposium international d’œnologie. Proceedings, pp. 191–195.

    Google Scholar 

  • Karanyicz, E., Antunovics, Z., Kallai, Z., & Sipiczki, M. (2017). Non-introgressive genome chimerisation by malsegregation in autodiploidised allotetraploids during meiosis of Saccharomyces kudriavzevii x Saccharomyces uvarum hybrids. Applied Microbiology and Biotechnology, 101, 4617–4633.

    Article  CAS  PubMed  Google Scholar 

  • Kroemer, K., & Krumbholz, G. (1931). Untersuchungen über osmophile Sprosspilze. Archiv für Mikrobiologie, 2, 352–410.

    Article  Google Scholar 

  • Kurtzman, C. P., & Droby, S. (2001). Metschnikowia fructicola, a new ascosporic yeast with potential for biocontrol of postharvest fruit rots. Systematic and Applied Microbiology, 24, 395–399.

    Article  CAS  PubMed  Google Scholar 

  • Ky, I., Lorrain, B., Jourdes, M., Pasquier, G., & Fermau, M. (2012). Assessment of grey mould (Botrytis cinerea) impact on phenolic and sensory quality of Bordeaux grapes, musts and wines for two consecutive vintages. Australian Journal of Grape and Wine Research, 18, 215–226.

    Article  CAS  Google Scholar 

  • Lachance, M. A. (2011). Metschnikowia Kamienski (1899). In C. P. Kurtzman, J. W. Fell, & T. Boekhout (Eds.), The yeasts, a taxonomic study (pp. 575–619). San Diego: Elsevier.

    Chapter  Google Scholar 

  • Laffon-Lafourcade, S., Lucmaret, V., Joyeux, A., & Ribéreau-Gayon, P. (1981). Utilisation de levains mixtes dans l’élaboration des vins de pourriture noble, en vue de réduire l’acidité volatile. Comptes Rendus de l’Académie d’Agriculture de France 67: 616–622.

    Google Scholar 

  • Lafon-Lafourcade, S., Larue, F., & Ribereau-Gayon, P. (1979). Evidence for the existence of “Survival Factors” as an explanation for some peculiarities of yeast growth, especially in grape must of high sugar concentration. Applied and Environmental Microbiology, 38, 1069–1073.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lafon-Lafourcade, S., Geneix, C., & Ribéreau-Gayon, P. (1984). Inhibition of alcoholic fermentation of grape must by fatty acids produced by yeasts and their elimination by yeast ghosts. Applied and Environmental Microbiology, 47, 1246–1249.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lam, S. S., & Howell, K. S. (2015). Drosophila-associated yeast species in vineyard ecosystems. FEMS Microbiology Letters, 362, fnv170.

    Article  PubMed  CAS  Google Scholar 

  • Le Roux, G., Eschenbruch, R., & De Bruin, S. I. (1973). The microbiology of South African wine making. Part VIII – The microflora of healthy and Botrytis cinerea infected grapes. Phytophylactica, 5, 51–54.

    Google Scholar 

  • Lemos, W. J., Jr., Bovo, B., Nadai, C., Crosato, G., Carlot, M., Favaron, F., Giacomini, A., & Corich, V. (2016). Biocontrol ability and action mechanism of Starmerella bacillaris (Synonym Candida zemplinina) isolated from wine musts against gray mold disease agent Botrytis cinerea on grape and their effects on alcoholic fermentation. Frontiers in Microbiology, 7, 1249.

    Article  PubMed  Google Scholar 

  • Llaurado, J., Rozes, N., Bobet, R., Mas, A., & Constanti, M. (2002). Low temperature alcoholic fermentations in high sugar concentration grape musts. Journal of Food Science, 67, 268–273.

    Article  CAS  Google Scholar 

  • Lopandic, K., Pfliegler, W. P., Tiefenbrunner, W., Gangl, H., Sipiczki, M., & Sterflinger, K. (2016). Genotypic and phenotypic evolution of yeast interspecies hybrids during high-sugar fermentation. Applied Microbiology and Biotechnology, 100, 6331–6343.

    Article  CAS  PubMed  Google Scholar 

  • Lorenzini, M., Azzolini, M., Tosi, E., & Zapparoli, G. (2013). Postharvest grape infection of Botrytis cinerea and its interactions with other moulds under withering conditions to produce noble-rotten grapes. Journal of Applied Microbiology, 114, 762–770.

    Article  CAS  PubMed  Google Scholar 

  • Loureiro, V., & Malfeito-Ferreira, M. (2003). Spoilage yeasts in the wine industry (review). International Journal of Food Microbiology, 86, 23–50.

    Article  CAS  PubMed  Google Scholar 

  • Magyar, I. (1996). Study of the yeast flora of Tokaj wine district. 11th International oenological symposium, Sopron, Hungary proceedings, pp 30–40.

    Google Scholar 

  • Magyar, I. (2011). Botrytized wines. Advances in Food and Nutrition Research, 63, 147–206.

    Article  CAS  PubMed  Google Scholar 

  • Magyar, I., & Bene, Z. (2006). Morphological and taxonomic study on mycobiota of noble rotted grapes in the Tokaj wine district. Acta Alimentaria, 35, 237–246.

    Article  Google Scholar 

  • Magyar, I., & Soos, J. (2016). Botrytized wines – Current perspectives. International Journal of Wine Research, 8, 29–39.

    Article  Google Scholar 

  • Magyar, I., & Tóth, T. (2011). Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae. Food Microbiology, 28, 94–100.

    Article  CAS  PubMed  Google Scholar 

  • Magyar, I., Toth, T., & Pomazi, A. (2008). Oenological characterization of indigenous yeasts involved in fermentation of Tokaji aszu. Bulletin de l’OIV, 81, 35–43.

    CAS  Google Scholar 

  • Magyar, D., Kallai, Z., Sipiczki, M., Dobolyi, C., Sebok, F., Beregszaszi, T., Bihari, Z., Kredics, L., & Oros, G. (2017). Survey of viable airborne fungi in wine cellars of Tokaj, Hungary. Aerobiologia (in press).

    Google Scholar 

  • Marsit, S., & Dequin, S. (2015). Diversity and adaptive evolution of Saccharomyces wine yeast: A review. FEMS Yeast Research, 15, fov067.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez, P., Valcarcel, M., Perez, L., & Benitez, T. (1998). Metabolism of Saccharomyces cerevisiae flor yeasts during fermentation and biological aging of fino sherry: By-products and aroma compounds. American Journal of Enology and Viticulture, 49, 240–250.

    CAS  Google Scholar 

  • Masneuf, I., & Dubourdieu, D. (2000). Rôle de la souche de levures sur les combinaisons du dioxyde de soufre des vins issus de raisins botrytisés et passerillés. Journal International des Sciences de la vigne et du vin International Journal of Vine and Wine Sciences, 34, 27–32.

    CAS  Google Scholar 

  • Masneuf-Pomarede, I., Le Jeune, C., Durrens, P., Lollier, M., Aigle, M., & Dubourdieu, D. (2007). Molecular typing of wine strains Saccharomyces bayanus var. uvarum using microsatellite markers. Systematic and Applied Microbiology, 30, 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Masneuf-Pomarede, I., Bely, M., Marullo, P., Lonvaud-Funel, A., & Dubourdieu, D. (2010). Reassessment of phenotypic traits for Saccharomyces bayanus var. uvarum wine yeast strains. International Journal of Food Microbiology, 139, 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Masneuf-Pomarede, I., Juquin, E., Miot-Sertier, C., Renault, P., Laizet, Y., Salin, F., Alexandre, H., Capozzi, V., Cocolin, L., Colonna-Ceccaldi, B., Englezos, V., Girard, P., Gonzalez, B., Lucas, P., Mas, A., Nisiotou, A., Sipiczki, M., Spano, G., Tassou, C., Bely, M., & Albertin, W. (2015). The yeast Starmerella bacillaris (synonym Candida zemplinina) shows high genetic diversity in winemaking environments. FEMS Yeast Research, 15, fov045.

    Article  PubMed  CAS  Google Scholar 

  • Masneuf-Pomarede, I., Salin, F., Borlin, M., Coton, E., Coton, M., Le Jeure, C., & Legras, J.-L. (2016). Microsatellite analysis of Saccharomyces uvarum diversity. FEMS Yeast Research, 16, fov002.

    Article  CAS  Google Scholar 

  • Miki, T., Ito, Y., Kuroha, K., Izawa, S., & Shinohara, T. (2008). Potential of yeasts isolated in botrytized grape juice to be new wine yeasts. Food Science and Technology Research, 14, 345–350.

    Article  CAS  Google Scholar 

  • Miklos, I., Sipiczki, M., & Benko, Z. (1994). Osmotolerant yeasts isolated from Tokaj wines. Journal of Basic Microbiology, 34(6), 379–385.

    Article  CAS  PubMed  Google Scholar 

  • Mills, D. A., Johannsen, E. A., & Cocolin, L. (2002). Yeast diversity and persistence in Botrytis-affected wine fermentations. Applied and Environmental Microbiology, 68, 4884–4893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minarik, E. (1965). Ecology of natural species of wine yeasts in Czechoslovakia. Mikrobiologija (Beograd), 20, 29–37.

    Google Scholar 

  • Minarik, E. (1969). Zur Ökologie von Hefen und hefeartigen Mikroorganismen sekundärer Standorte im Tokayer Weinbaugebiet. Mitt Klosterneuburg, 19, 40–45.

    Google Scholar 

  • Minarik, E. (1983). Zur Aktivierung der alkoholischen Gärung zuckerreicher Moste. Wein-Wissenschaft, 38, 202–209.

    CAS  Google Scholar 

  • Minarik, E. (1986). Zur Aktivierung der alkoholischen Gärung schwer vergärbarer Moste durch Hefezellwände. Mitt Klosterneuburg, 36, 194–197.

    CAS  Google Scholar 

  • Minarik, E., & Laho, L. (1962). Die Hefen des Tokayer Weinbaugebietes. Mitt Klosterneuburg, 12A, 7–10.

    Google Scholar 

  • Minarik, E., & Nagyova, M. (1964). Microflora of sweet tokay wines. Kvasny Prum, 10, 40–42.

    Article  Google Scholar 

  • Minárik, E., Emeriaud, M., & Jungova, O. (1977). Importance of preferential glucose and fructose fermentation by wine yeast for natural sweet wines. Kvasny Prum, 23, 281–284.

    Article  Google Scholar 

  • Minarik, E., Jungova, E., & Emeriaud, M. (1978). Fruktophile Hefen und deren Einfluss auf süsse Naturweine. Wein-Wissenschaft, 33, 42–47.

    Google Scholar 

  • Moore, K. J., Johnson, M. G., & Morris, J. R. (1988). Indigenous yeast microflora on Arkansas white Riesling (Vitis vinifera) grapes and in model systems. Journal of Food Science, 53, 1725–1728.

    Article  Google Scholar 

  • Morales, L., & Dujon, B. (2012). Evolutionary role of interspecies hybridisation and genetic exchange in yeasts. Microbiology and Molecular Biology Reviews, 76, 721–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortimer, R., & Polsinelli, M. (1999). On the origin of wine yeast. Research in Microbiology, 150, 199–204.

    Article  CAS  PubMed  Google Scholar 

  • Müller-Thurgau, H. (1888). Die Edelfäule der Trauben. Landw Jbr, 17, 83–90.

    Google Scholar 

  • Naumov, G.I. (1996) Genetic identification of biological species in the Saccharomyces sensu stricto complex. Journal of Industrial Microbiology, 17, 295–302.

    Article  CAS  Google Scholar 

  • Naumov, G. I. (2000). Saccharomyces bayanus var. uvarum comb. nov., a new variety established by genetic analysis. Microbiologiya, 69, 410–414.

    CAS  Google Scholar 

  • Naumov, G. I., Masneuf, I., Naumova, E. S., Aigle, M., & Dubourdieu, D. (2000). Association of Saccharomyces bayanus var. uvarum with some French wines: Genetic analysis of yeast populations. Research in Microbiology, 151, 683–691.

    Article  CAS  PubMed  Google Scholar 

  • Naumov, G. I., Naumova, E. S., Antunovics, Z., & Sipiczki, M. (2002). Saccharomyces bayanus var. uvarum in Tokaj wine-making of Slovakia and Hungary. Applied Microbiology and Biotechnology, 59, 727–730.

    Article  CAS  PubMed  Google Scholar 

  • Naumov, G. I., Naumova, E. S., Martynenko, N. N., & Masneuf-Pomarede, I. (2011). Taxonomy, ecology, and genetics of the yeast Saccharomyces bayanus: A new object for science and practice. Microbiology, 80, 735–742.

    Article  CAS  Google Scholar 

  • Naumova, E. S., Naumov, G. I., Barrio, E., & Querol, A. (2010). Mitochondrial DNA polymorphism of the yeast Saccharomyces bayanus var. Uvarum. Mikrobiologiya, 79, 543–550.

    CAS  Google Scholar 

  • Negri, S., Lovato, A., Boscaini, F., Salvetti, E., Torriani, S., Commisso, M., Danzi, R., Ugliano, M., Polverari, A., Tornielli, G. B., & Guzzo, F. (2017). The induction of noble rot (Botrytis cinerea) infection during postharvest withering changes the metabolome of grapevine berries (Vitis vinifera L., cv. Garganega). Frontiers in Plant Science, 8, 1002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson, K. E., & Amerine, M. A. (1956). Use of Botrytis cinerea for the production of sweet table wines. American Journal of Enology and Viticulture, 7, 131–136.

    CAS  Google Scholar 

  • Nelson, K. E., & Amerine, M. A. (1957). The use of Botrytis cinerea Pers. in the production of sweet table wines. Hilgardia, 26, 521–563.

    Article  CAS  Google Scholar 

  • Nguyen, H. V., Lepingle, A., & Gaillardin, C. (2000). Molecular typing demonstrates homogeneity of Saccharomyces uvarum strains and reveals the existence of hybrids between S. uvarum and S. cerevisiae, including the S. bayanus type strain CBS380. Systematic and Applied Microbiology, 23, 71–85.

    Article  CAS  PubMed  Google Scholar 

  • Nisiotou, A. A., Spiropoulos, A. E., & Nychas, G. J. E. (2007). Yeast community structures and dynamics in healthy and Botrytis-affected grape must fermentations. Applied and Environmental Microbiology, 73, 6705–6713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Través, L., Lopes, C. A., Barrio, E., & Querol, A. (2014). Stabilization process in Saccharomyces intra and interspecific hybrids in fermentative conditions. International Microbiology, 17, 213–224.

    PubMed  Google Scholar 

  • Pfliegler, W. P., & Sipiczki, M. (2016). Does fingerprinting truly represent the diversity of wine yeasts? A case study with interdelta genotyping of Saccharomyces cerevisiae strains. Letters in Applied Microbiology, 63, 406–411.

    Article  CAS  PubMed  Google Scholar 

  • Pfliegler, W. P., Antunovics, Z., & Sipiczki, M. (2012). Double sterility barrier between Saccharomyces species and its breakdown in allopolyploid hybrids by chromosome loss. FEMS Yeast Research, 12, 703–718.

    Article  CAS  PubMed  Google Scholar 

  • Pfliegler, W. P., Horvath, E., Kallai, Z., & Sipiczki, M. (2014). Diversity of Candida zemplinina isolates inferred from RAPD, micro/minisatellite and physiological analysis. Microbiological Research, 169, 402–410.

    Article  CAS  PubMed  Google Scholar 

  • Preobrazhenskii, A. A. (1947). Methods of artificial inoculation of grapes with Botrytis cinerea for the production of Shato-Ikem wine. Akademiya Nauk, Biokhemiya Vinodeliya, 1, 77–97.

    CAS  Google Scholar 

  • Pucheu-Planté, B., & Mercier, M. (1983). Étude ultrastructurale de l’interrelation hôte-parasite entre le raisin et le champignon Botrytis cinerea: Example de la pourriture noble en Sauternais. Canadian Journal of Botany, 61, 1785–1797.

    Article  Google Scholar 

  • Pulvirenti, A., Nguyen, H. V., Caggia, C., Guidici, P., Rainieri, S., & Zambonelli, C. (2000). Saccharomyces uvarum, a proper species within Saccharomyces sensu stricto. FEMS Microbiology Letters, 192, 191–196.

    Article  CAS  PubMed  Google Scholar 

  • Rantsiou, K., Dolci, P., Giacosa, S., Torchio, F., Tofalo, R., Torriani, S., Suzzi, G., Rolle, L., & Cocolin, L. (2012). Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Applied and Environmental Microbiology, 78, 1987–1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapp, A., & Reuther, K. H. (1971). Der Gehalt an freien Aminosäuren in Traubenmosten von gesunden und edelfaulen Beeren verschiedener Rebesorten. Vitis, 10, 51–58.

    CAS  Google Scholar 

  • Reed, G., & Nagodawithana, T. W. (1988). Technology of yeast usage in winemaking. American Journal of Enology and Viticulture, 39, 83–90.

    CAS  Google Scholar 

  • Rementeria, A., Rodriguez, J. A., Cadaval, A., Amenabar, R., Muguruza, J. R., Hernendo, F. L., et al. (2003). Yeast associated with spontaneous fermentations of white wines from the “Txakoli de Bizkaia” region (Basque Country, North Spain). International Journal of Food Microbiology, 86, 201–207.

    Article  CAS  PubMed  Google Scholar 

  • Ribéreau-Gayon, P., Lafon-Lafourcade, S., Dubourdieu, D., Lucmaret, V., & Larue, F. (1979). Métabolisme de Saccharomyces cerevisiae dans les moûts de raisins parasites par Botrytis cinerea. Inhibition de la fermentation: formation d’acide acétique et de glycerol. Comptes Rendus de l'Académie des Sciences, 289, 441–444.

    Google Scholar 

  • Ribéreau-Gayon, P., Dubourdieu, D., Donéche, B., & Lonvoud, A. (2000). Handbook of enology. In The microbiology of wine and vinifications (Vol. 1). Chichester: Wiley.

    Google Scholar 

  • Romano, P. (2002). Role of apiculate yeasts on organoleptic characteristics of wine. In M. Ciani (Ed.), Biodiversity and biotechnology of wine yeasts (pp. 99–109). Kerala: Research Signpost.

    Google Scholar 

  • Romano, P., & Suzzi, G. (1993). Potential use of Zygosaccharomyces species in winemaking. Journal of Wine Research, 4, 87–94.

    Article  Google Scholar 

  • Romano, P., Suzzi, G., Domizio, P., & Fatichenti, F. (1997). Secondary products formation as a tool for discriminating non-Saccharomyces wine strains. Antonie Van Leeuwenhoek, 71, 239–242.

    Article  CAS  PubMed  Google Scholar 

  • Romboli, Y., Mangani, S., Buscioni, G., Granchi, L., & Vincenzini, M. (2015). Effect of Saccharomyces cerevisiae and Candida zemplinina on quercetin, vitisin a and hydroxytyrosol contents in Sangiovese wines. World Journal of Microbiology and Biotechnology, 31, 1137–1145.

    Article  CAS  PubMed  Google Scholar 

  • Rosini, G., Federici, F., & Martini, A. (1982). Yeast flora of grape berries during ripening. Microbial Ecology, 8, 83–89.

    Article  CAS  PubMed  Google Scholar 

  • Sadoudi, M., Tourdot-Maréchal, R., Rousseaux, S., Steyer, D., Gallardo-Chacon, J. J., Ballester, J., Vichi, S., Guerin-Schneider, R., Caixach, J., & Alexandre, H. (2012). Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiology, 32, 243–253.

    Article  CAS  PubMed  Google Scholar 

  • Salvetti, E., Campanaro, S., Campedelli, I., Fracchetti, F., Gobbi, A., Tornielli, G. B., Torriani, S., & Felis, G. E. (2016). Whole-metagenome-sequencing-based community profiles of Vitis vinifera L. cv. Corvina berries withered in two post-harvest conditions. Frontiers in Microbiology, 7, 937.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schütz, M., & Gafner, J. (1995). Lower fructose uptake capacity of genetically characterized strains of Saccharomyces bayanus compared to strains of Saccharomyces cerevisiae: A likely cause of reduced alcoholic fermentation activity. American Journal of Enology and Viticulture, 46, 175–180.

    Google Scholar 

  • Shimizu, Y., & Watanabe, M. (1981). Effects of yeast strains and environmental conditions on formation of organic acids in must during fermentation. Journal of Fermentation Technology, 59, 27–32.

    Google Scholar 

  • Sipiczki, M. (2001). Characterisation of Candida stellata strains isolated from botrytized grapes and wines in Tokaj. 21st international specialized symposium on yeasts. Lviv. Book of Abstracts p. 61.

    Google Scholar 

  • Sipiczki, M. (2002). Taxonomic and physiological diversity of Saccharomyces bayanus. In M. Cian (Ed.), Biodiversity and biotechnology of wine yeasts (pp. 53–69). Kerala: Research Signpost.

    Google Scholar 

  • Sipiczki, M. (2003). Candida zemplinina sp. nov., an osmotolerant and psychrotolerant yeast that ferments sweet botrytized wines. International Journal of Systematic and Evolutionary Microbiology, 53, 2079–2083.

    Article  CAS  PubMed  Google Scholar 

  • Sipiczki, M. (2004). Species identification and comparative molecular and physiological analysis of Candida zemplinina and Candida stellata. Journal of Basic Microbiology, 44, 471–479.

    Article  CAS  PubMed  Google Scholar 

  • Sipiczki, M. (2006). Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. Applied and Environmental Microbiology, 72, 6716–6724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sipiczki, M. (2008). Interspecies hybridisation and recombination in Saccharomyces wine yeasts. FEMS Yeast Research, 8, 996–1007.

    Article  CAS  PubMed  Google Scholar 

  • Sipiczki, M. (2016). Overwintering of vineyard yeasts: Survival of interacting yeast communities in grapes mummified on vines. Frontiers in Microbiology, 7, 212.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sipiczki, M., & Csoma, H. (2002). An investigation into the yeast flora of botrytized grapes in Tokaj. 22nd international specialized symposium on yeasts. Pilanesberg, Programme and abstracts, p. 106.

    Google Scholar 

  • Sipiczki, M., Romano, P., Lipani, G., Miklos, I., & Antunovics, Z. (2001). Analysis of yeasts derived from natural fermentation in a Tokaj winery. Antonie Van Leeuwenhoek, 79, 97–105.

    Article  CAS  Google Scholar 

  • Sipiczki, M., Ciani, M., & Csoma, H. (2005). Taxonomic reclassification of Candida stellata DBVPG 3827. Folia Microbiologica, 50, 494–498.

    Article  CAS  PubMed  Google Scholar 

  • Sipiczki, M., Csoma, H., & Antunovics, Z. (2006). Biodiversity of yeast microbiota of botrytized Tokaj grapes and wines. ECCO XXV. The role of culture collections at the beginning of the XXIst century. Budapest, Proceedings pp. 55–65.

    Google Scholar 

  • Sipiczki, M., Csoma, H., Antunovics, Z., & Pfliegler, W. (2010). Biodiversity in yeast populations associated with botrytised wine making. Mitt Klosterneuburg, 60, 387–394.

    Google Scholar 

  • Sipiczki, M., Pfliegler, W. P., & Holb, I. J. (2013). Species share a pool of diverse rRNA genes differing in regions that determine hairpin-loop structures and evolve by reticulation. PLoS One, 8, e67384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobotka, H., & Reiner, M. (1930). CII. Selective fermentation. I. Alcoholic fermentation of glucose, fructose and mannose mixtures. The Biochemical Journal, 24, 926–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soden, A., Francis, I. L., Oakey, H., & Henschke, P. A. (2000). Effects of co-fermentation with Candida stellata and Saccharomyces cerevisiae on the aroma and composition of Chardonnay wine. Australian Journal of Grape and Wine Research, 6, 21–30.

    Article  CAS  Google Scholar 

  • Sols, A. (1956). Selective fermentation and phosphorylation of sugars by sauternes yeast. Biochimica et Biophysica Acta, 20, 62–68.

    Article  CAS  PubMed  Google Scholar 

  • Soos, I., & Asvany, A. (1950). Morphological and physiological investigation of the Hungarian wine yeast collection. Yearbook of the Research Institute for Ampelology, 10, 255–290.

    Google Scholar 

  • Sponholz, W. R. (1991). Nitrogen compounds in grapes, must, and wine. In J. Rantz (Ed.), International symposium on nitrogen in grapes and wine (pp. 67–77). Davis: American Society for Enology and Viticulture.

    Google Scholar 

  • Sponholz, W. R., & Dittrich, H. H. (1974). Die Bildung von SO2 bindenden Gärungsnebenprodukten, höheren Alkoholen und Estern bei einigen Reinzuchthefestämmen und bei einigen für die Weinbereitung wichtigen “wilden” Hefen. Wein-Wissenschaft, 29, 301–314.

    Google Scholar 

  • Sponholz, W. R., & Dittrich, H. H. (1984). Über das vorkommen von Galacturon- und Glucuronsäure in Weinen, Sherries, Obst- und Dessertweinen. Vitis, 23, 214–224.

    CAS  Google Scholar 

  • Sponholz, W. R., Dittrich, H. H., & Linssen, U. (1987). Die Veränderungen von Most-Inhaltsstoffen durch Botrytis cinerea in edelfaulen Traubenbeeren definierter Auslese-Stadien. Wein-Wissenschaft, 42, 266–284.

    Google Scholar 

  • Stefanini, I., Dapporto, L., Legras, J. L., Calabretta, A., Di Paola, M., De Filippo, C., Viola, R., Capretti, P., Polsinelly, M., Turillazi, S., & Cavalieri, D. (2012). Role of social wasps in Saccharomyces cerevisiae ecology and evolution. Proceedings of the National Academy of Sciences of the United States of America, 109, 13398–13403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sütterlin, K. A., Hoffman-Boller, P., & Gafner, J. (2004). Kurieren von Gährstockungen mit der fructophilen Wienhefe Zygosaccharomyces bailii. 7th International symposium on innovations in enology, Intervitis Interfructa 2004, Stuttgart-Killesberg.

    Google Scholar 

  • Suzzi, G., Schirone, M., Sergi, M., Marianella, R. M., Fasoli, G., Aguzzi, I., & Tofalo, R. (2012). Multistarter from organic viticulture for red wine Montepulciano d’Abruzzo production. Frontiers in Microbiology, 3, 135.

    PubMed  PubMed Central  Google Scholar 

  • Tofalo, R., Schirone, M., Torriani, S., Rantsiou, K., Cocolin, L., Perpetuini, G., & Suzzi, G. (2012). Diversity of Candida zemplinina strains from grapes and Italian wines. Food Microbiology, 29, 18–26.

    Article  CAS  PubMed  Google Scholar 

  • Torriani, S., Zapparoli, G., & Suzzi, G. (1999). Genetic and phenotypic diversity of Saccharomyces sensu stricto strains isolated from Amarone wine. Antonie Van Leeuwenhoek, 75, 207–215.

    Article  CAS  PubMed  Google Scholar 

  • Tosi, E., Azzolini, M., Lorenzini, M., Torriani, S., Fedrizzi, B., Finato, F., Cipriani, M., & Zapparoli, G. (2013). Induction of grape botrytization during withering affects volatile composition of Recioto di Soave, a “passito”-style wine. European Food Research and Technology, 236, 853–862.

    Article  CAS  Google Scholar 

  • Usseglio-Tomasset, L., Bosia, P. D., Delfini, C., & Ciolfi, G. (1980). I vini Recioto e Amarone della Valpolicella. Vini d’Italia, 22, 85–97.

    Google Scholar 

  • van Rensburg, P., Zyl, W. H., & Pretorius, I. S. (1997). Over-expression of the Saccharomyces cerevisiae exo-β-1, 3-glucanase gene together with the Bacillus subtilis endo-β-1, 3-1, 4-glucanase gene and the Butyrivibrio fibrisolvens endo-β-1, 4-glucanase gene in yeast. Journal of Biotechnology, 55, 43–53.

    Article  PubMed  Google Scholar 

  • Vannini, A., & Chilosi, G. (2013). Botrytis infection: Grey mould and noble rot. In F. Mencarelli & P. Tonutti (Eds.), Sweet, reinforced and fortified wines: Grape biochemistry, technology and vinification (pp. 159–169). Oxford: Wiley.

    Chapter  Google Scholar 

  • Wang, X. J., Tao, Y. S., Wu, Y., An, R. Y., & Yue, Z. Y. (2017). Aroma compounds and characteristics of noble-rot wines of chardonnay grapes artificially botrytized in the vineyard. Food Chemistry, 226, 41–50.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, M., & Shimizu, Y. (1980). Effect of yeasts on botrytized wine making: Application of Botrytis cinerea in wine making (III). Journal of Fermentation Technology, 58, 227–235.

    CAS  Google Scholar 

  • Weimar, K., Tschesche, R., & Breitmaler, E. (1979). Botrylacton, ein neuer Wirkstoff aus der Nährlösung des Pilzes Botrytis cinerea. Chemische Berichte, 112, 3598–3602.

    Article  Google Scholar 

  • Zott, K., Miot-Sertier, C., Claisse, O., Lonvaud-Funel, A., Masneuf-Pomarede, I. (2008). Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. International Journal of Food Microbiology, 125, 197–203.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sipiczki, M. (2019). Yeasts in Botrytized Wine Making. In: Romano, P., Ciani, M., Fleet, G. (eds) Yeasts in the Production of Wine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9782-4_7

Download citation

Publish with us

Policies and ethics