Skip to main content

Next-Generation Genome-Scale Models Incorporating Multilevel ‘Omics Data: From Yeast to Human

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2049))

Abstract

Genome-scale modelling in eukaryotes has been pioneered by the yeast Saccharomyces cerevisiae. Early metabolic networks have been reconstructed based on genome sequence and information accumulated in the literature on biochemical reactions. Protein–protein interaction networks have been constructed based on experimental observations such as yeast-2-hybrid method. Gene regulatory networks were based on a variety of data types, including information on TF-promoter binding and gene coexpression. The aforementioned networks have been improved gradually, and methods for their integration were developed. Incorporation of omics data including genomics, metabolomics, transcriptomics, fluxome, and phosphoproteome led to next-generation genome-scale models. The methods tested on yeast have later been implemented in human, further, cellular components found to be important in yeast physiology under (ab)normal conditions, and (dis)regulation mechanisms in yeast shed light to the healthy and disease states in human. This chapter provides a historical perspective on next-generation genome-scale models incorporating multilevel ‘omics data, from yeast to human.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohammadi S, Saberidokht B, Subramaniam S, Grama A (2015) Scope and limitations of yeast as a model organism for studying human tissue-specific pathways. BMC Syst Biol 9:96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Castrillo JI, Oliver SG (2004) Yeast as a touchstone in post-genomic research: strategies for integrative analysis in functional genomics. BMB Rep 37:93–106

    Article  CAS  Google Scholar 

  3. Förster J, Famili I, Fu P, Palsson BØ, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Schwikowski B, Uetz P, Fields S (2000) A network of protein–protein interactions in yeast. Nat Biotechnol 18:1257

    Article  CAS  PubMed  Google Scholar 

  5. Lee TI et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804

    Article  CAS  PubMed  Google Scholar 

  6. Famili I, Förster J, Nielsen J, Palsson BO (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci 100:13134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nookaew I, Olivares-Hernández R, Bhumiratana S, Nielsen J (2011) Genome-scale metabolic models of Saccharomyces cerevisiae. In: Castrillo JI, Oliver SG (eds) Yeast systems biology. Springer, New York, NY, pp 445–463

    Chapter  Google Scholar 

  8. Österlund T, Nookaew I, Nielsen J (2012) Fifteen years of large scale metabolic modeling of yeast: developments and impacts. Biotechnol Adv 30:979–988

    Article  PubMed  CAS  Google Scholar 

  9. Raman K (2010) Construction and analysis of protein–protein interaction networks. Automat Exp 2:2

    Article  Google Scholar 

  10. Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol 3:88

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim TM, Park PJ (2011) Advances in analysis of transcriptional regulatory networks. Wiley Interdiscip Rev Syst Biol Med 3:21–35

    Article  CAS  PubMed  Google Scholar 

  12. Chiappino-Pepe A, Pandey V, Ataman M, Hatzimanikatis V (2017) Integration of metabolic, regulatory and signaling networks towards analysis of perturbation and dynamic responses. Curr Opin Syst Biol 2:59–66

    Article  Google Scholar 

  13. Gonçalves E et al (2013) Bridging the layers: towards integration of signal transduction, regulation and metabolism into mathematical models. Mol BioSyst 9:1576–1583

    Article  PubMed  CAS  Google Scholar 

  14. Yugi K et al (2014) Reconstruction of insulin signal flow from phosphoproteome and metabolome data. Cell Rep 8:1171–1183

    Article  CAS  PubMed  Google Scholar 

  15. Mitra K, Carvunis A-R, Ramesh SK, Ideker T (2013) Integrative approaches for finding modular structure in biological networks. Nat Rev Genet 14:719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yugi K, Kubota H, Hatano A, Kuroda S (2016) Trans-omics: how to reconstruct biochemical networks across multiple ‘omic’ layers. Trends Biotechnol 34:276–290. https://doi.org/10.1016/j.tibtech.2015.12.013

    Article  CAS  PubMed  Google Scholar 

  17. Marbach D et al (2012) Wisdom of crowds for robust gene network inference. Nat Methods 9:796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koch C et al (2017) Inference and evolutionary analysis of genome-scale regulatory networks in large phylogenies. Cell Syst 4:543–558. e548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chandrasekaran S, Price ND (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci 107:17845–17850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chandrasekaran S, Price ND (2013) Metabolic constraint-based refinement of transcriptional regulatory networks. PLoS Comput Biol 9:e1003370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zomorrodi AR, Maranas CD (2010) Improving the i MM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data. BMC Syst Biol 4:178

    Article  PubMed  PubMed Central  Google Scholar 

  22. Abdulrehman D et al (2010) YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface. Nucleic Acids Res 39:D136–D140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Fendt SM, Oliveira AP, Christen S, Picotti P, Dechant RC, Sauer U (2010) Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast. Mol Syst Biol 6:432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuepfer L, Sauer U, Blank LM (2005) Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res 15:1421–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Z et al (2017) Combining inferred regulatory and reconstructed metabolic networks enhances phenotype prediction in yeast. PLoS Comput Biol 13:e1005489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bonneau R et al (2007) A predictive model for transcriptional control of physiology in a free living cell. Cell 131:1354–1365

    Article  CAS  PubMed  Google Scholar 

  27. Mo ML, Palsson BØ, Herrgård MJ (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 3:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Heavner BD, Smallbone K, Price ND, Walker LP (2013) Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database 2013:bat059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Aung HW, Henry SA, Walker LP (2013) Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind Biotechnol 9:215–228

    Article  CAS  Google Scholar 

  30. Gonçalves E et al (2017) Systematic analysis of transcriptional and post-transcriptional regulation of metabolism in yeast. PLoS Comput Biol 13:e1005297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wanichthanarak K, Wongtosrad N, Petranovic D (2015) Genome-wide expression analyses of the stationary phase model of ageing in yeast. Mech Ageing Dev 149:65–74

    Article  CAS  PubMed  Google Scholar 

  32. Väremo L, Nielsen J, Nookaew I (2013) Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res 41:4378–4391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Beisser D, Klau GW, Dandekar T, Müller T, Dittrich MT (2010) BioNet: an R-package for the functional analysis of biological networks. Bioinformatics 26:1129–1130

    Article  CAS  PubMed  Google Scholar 

  34. Szklarczyk D et al (2010) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Miles S, Li L, Davison J, Breeden LL (2013) Xbp1 directs global repression of budding yeast transcription during the transition to quiescence and is important for the longevity and reversibility of the quiescent state. PLoS Genet 9:e1003854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Jouhten P et al (2008) Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN. PK113-1A. BMC Syst Biol 2:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Rintala E, Toivari M, Pitkänen J-P, Wiebe MG, Ruohonen L, Penttilä M (2009) Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae. BMC Genomics 10:461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wiebe MG et al (2007) Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Res 8:140–154

    Article  PubMed  CAS  Google Scholar 

  39. Lindfors E, Jouhten P, Oja M, Rintala E, Orešič M, Penttilä M (2014) Integration of transcription and flux data reveals molecular paths associated with differences in oxygen-dependent phenotypes of Saccharomyces cerevisiae. BMC Syst Biol 8:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lindfors E, Gopalacharyulu PV, Halperin E, Orešič M (2009) Detection of molecular paths associated with insulitis and type 1 diabetes in non-obese diabetic mouse. PLoS One 4:e7323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jouhten P, Wiebe M, Penttilä M (2012) Dynamic flux balance analysis of the metabolism of Saccharomyces cerevisiae during the shift from fully respirative or respirofermentative metabolic states to anaerobiosis. FEBS J 279:3338–3354

    Article  CAS  PubMed  Google Scholar 

  42. Heavner BD, Smallbone K, Barker B, Mendes P, Walker LP (2012) Yeast 5–an expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Syst Biol 6:55

    Article  PubMed  PubMed Central  Google Scholar 

  43. Breitkreutz A et al (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328:1043–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaufman DE, Smith RL (1998) Direction choice for accelerated convergence in hit-and-run sampling. Oper Res 46:84–95

    Article  Google Scholar 

  45. Tiranti V et al (1998) Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am J Hum Genet 63:1609–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bork P, Jensen LJ, Von Mering C, Ramani AK, Lee I, Marcotte EM (2004) Protein interaction networks from yeast to human. Curr Opin Struct Biol 14:292–299

    Article  CAS  PubMed  Google Scholar 

  47. Perocchi F, Mancera E, Steinmetz LM (2008) Systematic screens for human disease genes, from yeast to human and back. Mol BioSyst 4:18–29

    Article  CAS  PubMed  Google Scholar 

  48. Petranovic D, Nielsen J (2008) Can yeast systems biology contribute to the understanding of human disease? Trends Biotechnol 26:584–590

    Article  CAS  PubMed  Google Scholar 

  49. Roy S, Lagree S, Hou Z, Thomson JA, Stewart R, Gasch AP (2013) Integrated module and gene-specific regulatory inference implicates upstream signaling networks. PLoS Comput Biol 9:e1003252

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gasch AP et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ravasi T et al (2010) An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140:744–752

    Article  CAS  PubMed  Google Scholar 

  52. Consortium U (2011) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40:D71–D75

    Article  CAS  Google Scholar 

  53. Hu J et al (2014) Global analysis of phosphorylation networks in humans. Biochim Biophys Acta 1844:224–231

    Article  CAS  PubMed  Google Scholar 

  54. Newman RH et al (2013) Construction of human activity-based phosphorylation networks. Mol Syst Biol 9:655

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chasman D et al (2014) Pathway connectivity and signaling coordination in the yeast stress-activated signaling network. Mol Syst Biol 10:759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wall D, Fraser H, Hirsh A (2003) Detecting putative orthologs. Bioinformatics 19:1710–1711

    Article  CAS  PubMed  Google Scholar 

  58. Khurana V et al (2017) Genome-scale networks link neurodegenerative disease genes to α-synuclein through specific molecular pathways. Cell Syst 4:157–170. e114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hu Y, Flockhart I, Vinayagam A, Bergwitz C, Berger B, Perrimon N, Mohr SE (2011) An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics 12:357

    Article  PubMed  PubMed Central  Google Scholar 

  60. Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hood L, Flores M (2012) A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. New Biotechnol 29:613–624

    Article  CAS  Google Scholar 

  62. Hou J, Acharya L, Zhu D, Cheng J (2015) An overview of bioinformatics methods for modeling biological pathways in yeast. Brief Funct Genomics 15:95–108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Yan J, Risacher SL, Shen L, Saykin AJ (2017) Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief Bioinform 19(6):1370–1381

    PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by The Turkish Academy of Sciences—Outstanding Young Scientists Award Program (TUBA-GEBIP) and TÜBİTAK BİDEB 2232 Programme (116C062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pınar Pir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Çakır, T., Kökrek, E., Avşar, G., Abdik, E., Pir, P. (2019). Next-Generation Genome-Scale Models Incorporating Multilevel ‘Omics Data: From Yeast to Human. In: Oliver, S.G., Castrillo, J.I. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 2049. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9736-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9736-7_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9735-0

  • Online ISBN: 978-1-4939-9736-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics