Skip to main content

Integral caa3-Cytochrome c Oxidase from Thermus thermophilus: Purification and Crystallization

  • Protocol
  • First Online:
Protein Self-Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2039))

  • 1382 Accesses

Abstract

Cytochrome c oxidase is a respiratory enzyme catalyzing the energy-conserving reduction of molecular oxygen to water—a fundamental biological process of cell respiration. The first crystal structures of the type A cytochrome c oxidases, bovine heart and Paracoccus denitrificans cytochrome c oxidases, were published in 1995 and contributed immensely to the understanding of the enzyme’s mechanism of action. The senior author’s research focus was directed toward understanding the structure and function of the type B cytochrome c oxidases, ba3-oxidase and type A2 caa3-oxidase, both from the extreme thermophilic bacterium Thermus thermophilus. While the ba3-oxidase structure was published in 2000 and functional characterization is well-documented in the literature, we recently successfully solved the structure of the caa3-nature made enzyme-substrate complex. This chapter is dedicated to the purification and crystallization process of caa3-cytochrome c oxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferguson-Miller S, Babcock GT (1996) Heme/copper terminal oxidases. Chem Rev 96:2889–2908

    Article  CAS  Google Scholar 

  2. Michel H, Behr J, Harrenga A, Kannt A (1998) Cytochrome C oxidase: structure and spectroscopy. Annu Rev Biophys Biomol Struct 27:329–356. https://doi.org/10.1146/annurev.biophys.27.1.329

    Article  CAS  PubMed  Google Scholar 

  3. Tsukihara T, Aoyama H, Yamashita E et al (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272:1136–1144

    Article  CAS  Google Scholar 

  4. Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669. https://doi.org/10.1038/376660a0

    Article  CAS  PubMed  Google Scholar 

  5. Soulimane T, Buse G, Bourenkov GP et al (2000) Structure and mechanism of the aberrant ba(3)-cytochrome c oxidase from thermus thermophilus. EMBO J 19:1766–1776. https://doi.org/10.1093/emboj/19.8.1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Svensson-Ek M, Abramson J, Larsson G et al (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321:329–339

    Article  CAS  Google Scholar 

  7. Buschmann S, Warkentin E, Xie H et al (2010) The structure of cbb3 cytochrome oxidase provides insights into proton pumping. Science 329:327–330. https://doi.org/10.1126/science.1187303

    Article  CAS  PubMed  Google Scholar 

  8. Lyons JA, Aragão D, Slattery O et al (2012) Structural insights into electron transfer in caa3-type cytochrome oxidase. Nature 487:514–518. https://doi.org/10.1038/nature11182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. OSHIMA T, IMAHORI K (1974) Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. Int J Syst Bacteriol 24:102–112. https://doi.org/10.1099/00207713-24-1-102

    Article  CAS  Google Scholar 

  10. Rich PR (2003) The molecular machinery of Keilin’s respiratory chain. Biochem Soc Trans 31:1095–1105

    Article  CAS  Google Scholar 

  11. Haltia T, Finel M, Harms N et al (1989) Deletion of the gene for subunit III leads to defective assembly of bacterial cytochrome oxidase. EMBO J 8:3571–3579

    Article  CAS  Google Scholar 

  12. Riistama S, Puustinen A, García-Horsman A et al (1996) Channelling of dioxygen into the respiratory enzyme. Biochim Biophys Acta 1275:1–4

    Article  Google Scholar 

  13. Fee JA, Choc MG, Findling KL et al (1980) Properties of a copper-containing cytochrome c1aa3 complex: a terminal oxidase of the extreme thermophile Thermus thermophilus HB8. Proc Natl Acad Sci U S A 77:147–151

    Article  CAS  Google Scholar 

  14. Mather MW, Springer P, Hensel S et al (1993) Cytochrome oxidase genes from Thermus thermophilus. Nucleotide sequence of the fused gene and analysis of the deduced primary structures for subunits I and III of cytochrome caa3. J Biol Chem 268:5395–5408

    CAS  PubMed  Google Scholar 

  15. Mather MW, Springer P, Fee JA (1991) Cytochrome oxidase genes from Thermus thermophilus. Nucleotide sequence and analysis of the deduced primary structure of subunit IIc of cytochrome caa3. J Biol Chem 266:5025–5035

    CAS  PubMed  Google Scholar 

  16. Than ME, Hof P, Huber R et al (1997) Thermus thermophilus cytochrome-c552: a new highly thermostable cytochrome-c structure obtained by MAD phasing. J Mol Biol 271:629–644. https://doi.org/10.1006/jmbi.1997.1181

    Article  CAS  PubMed  Google Scholar 

  17. Lecomte S, Hilleriteau C, Forgerit JP et al (2001) Structural changes of cytochrome c(552) from Thermus thermophilus adsorbed on anionic and hydrophobic surfaces probed by FTIR and 2D-FTIR spectroscopy. Chembiochem 2:180–189

    Article  CAS  Google Scholar 

  18. Janzon J, Ludwig B, Malatesta F (2007) Electron transfer kinetics of soluble fragments indicate a direct interaction between complex III and the caa3 oxidase in Thermus thermophilus. IUBMB Life 59:563–569. https://doi.org/10.1080/15216540701242482

    Article  CAS  PubMed  Google Scholar 

  19. Schrodinger L PyMOL Molecular Graphics System, Version 2.0. Schrödinger, LLC, New York, NY

    Google Scholar 

  20. Sousa PMF, Videira M a M, Bohn A et al (2012) The aerobic respiratory chain of Escherichia coli: from genes to supercomplexes. Microbiology 158:2408–2418. https://doi.org/10.1099/mic.0.056531-0

    Article  CAS  PubMed  Google Scholar 

  21. Brzezinski P (2004) Redox-driven membrane-bound proton pumps. Trends Biochem Sci 29:380–387. https://doi.org/10.1016/j.tibs.2004.05.008

    Article  CAS  PubMed  Google Scholar 

  22. Giuffrè A, Stubauer G, Sarti P et al (1999) The heme-copper oxidases of Thermus thermophilus catalyze the reduction of nitric oxide: evolutionary implications. Proc Natl Acad Sci U S A 96:14718–14723

    Article  Google Scholar 

  23. Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33:476–504

    Article  CAS  Google Scholar 

  24. Keightley JA, Zimmermann BH, Mather MW et al (1995) Molecular genetic and protein chemical characterization of the cytochrome ba3 from Thermus thermophilus HB8. J Biol Chem 270:20345–20358 

    Google Scholar 

  25. Cheng A, Hummel B, Qiu H, Caffrey M (1998) A simple mechanical mixer for small viscous lipid-containing samples. Chem Phys Lipids 95:11–21

    Article  CAS  Google Scholar 

  26. Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4:706–731. https://doi.org/10.1038/nprot.2009.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cherezov V, Caffrey M, IUCr (2003) Nano-volume plates with excellent optical properties for fast, inexpensive crystallization screening of membrane proteins. J Appl Crystallogr 36:1372–1377. https://doi.org/10.1107/S002188980301906X

    Article  CAS  Google Scholar 

  28. van Gelder BF (1966) On cytochrome c oxidase. I. The extinction coefficients of cytochrome a and cytochrome a3. Biochim Biophys Acta 118:36–46

    Article  Google Scholar 

  29. Mooser D, Maneg O, Corvey C et al (2005) A four-subunit cytochrome bc(1) complex complements the respiratory chain of Thermus thermophilus. Biochim Biophys Acta 1708:262–274. https://doi.org/10.1016/j.bbabio.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  30. Mooser D, Maneg O, MacMillan F et al (2006) The menaquinol-oxidizing cytochrome bc complex from Thermus thermophilus: protein domains and subunits. Biochim Biophys Acta 1757:1084–1095. https://doi.org/10.1016/j.bbabio.2006.05.033

    Article  CAS  PubMed  Google Scholar 

  31. Soulimane T (1993) Activity and preparation for crystallisation of various cytochrome oxidase preparations. Rheinish-Westfalishen Technishen Hochshule, Aachen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orla Slattery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Slattery, O., Cherrak, S., Soulimane, T. (2019). Integral caa3-Cytochrome c Oxidase from Thermus thermophilus: Purification and Crystallization. In: McManus, J. (eds) Protein Self-Assembly. Methods in Molecular Biology, vol 2039. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9678-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9678-0_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9677-3

  • Online ISBN: 978-1-4939-9678-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics