Skip to main content

Proteometabolomics of Melphalan Resistance in Multiple Myeloma

  • Protocol
  • First Online:
Metabolomics

Abstract

Drug resistance remains a critical problem for the treatment of multiple myeloma (MM), which can serve as a specific example for a highly prevalent unmet medical need across almost all cancer types. In MM, the therapeutic arsenal has expanded and diversified, yet we still lack in-depth molecular understanding of drug mechanisms of action and cellular pathways to therapeutic escape. For those reasons, preclinical models of drug resistance are developed and characterized using different approaches to gain insights into tumor biology and elucidate mechanisms of drug resistance. For MM, numerous drugs are used for treatment, including conventional chemotherapies (e.g., melphalan or l-phenylalanine nitrogen mustard), proteasome inhibitors (e.g., Bortezomib), and immunomodulators (e.g., Lenalidomide). These agents have diverse effects on the myeloma cells, and several mechanisms of drug resistance have been previously described. The disparity of these mechanisms and the complexity of these biological processes lead to the formation of complicated hypotheses that require omics approaches for efficient and effective analysis of model systems that can then be interpreted for patient benefit. Here, we describe the combination of metabolomics and proteomics to assess melphalan resistance in MM by examining three specific areas: drug metabolism, modulation of endogenous metabolites to assist in therapeutic escape, and changes in protein activity gauged by ATP probe uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar SK, Rajkumar SV (2018) The multiple myelomas–current concepts in cytogenetic classification and therapy. Nat Rev Clin Oncol. https://doi.org/10.1038/s41571-018-0018-y

    Article  CAS  PubMed  Google Scholar 

  2. Sharma V, Eckels J, Schilling B, Ludwig C, Jaffe JD, MacCoss MJ, MacLean B (2018) Panorama public: a public repository for quantitative data sets processed in skyline. Mol Cell Proteomics. https://doi.org/10.1074/mcp.RA117.000543

    Article  CAS  Google Scholar 

  3. Mateos MV, San Miguel JF (2017) Management of multiple myeloma in the newly diagnosed patient. Hematology Am Soc Hematol Educ Program 2017(1):498–507. https://doi.org/10.1182/asheducation-2017.1.498

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bergsagel DE, Sprague CC, Austin C, Griffith KM (1962) Evaluation of new chemotherapeutic agents in the treatment of multiple myeloma. IV. L-phenylalanine mustard (NSC-8806). Cancer Chemother Rep 21:87–99

    CAS  PubMed  Google Scholar 

  5. Bernard J, Seligmann M, Danon F (1962) Attempt at treatment of 21 patients with myeloma or macroglobulinemia with p-di-2-chlorethylamino-1-phenylalanine (melphalan). Nouv Rev Fr Hematol 2:611–616

    CAS  PubMed  Google Scholar 

  6. Clifford P, Clift RA, Gillmore JH (1963) Oral melphalan therapy in advanced malignant disease. Br J Cancer 17:381–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alberts DS, Chang SY, Chen HS, Evans TL, Moon TE (1979) Oral melphalan kinetics. Clin Pharmacol Ther 26(6):737–745

    Article  CAS  PubMed  Google Scholar 

  8. McCarthy PL, Holstein SA, Petrucci MT, Richardson PG, Hulin C, Tosi P, Bringhen S, Musto P, Anderson KC, Caillot D, Gay F, Moreau P, Marit G, Jung SH, Yu Z, Winograd B, Knight RD, Palumbo A, Attal M (2017) Lenalidomide maintenance after autologous stem-cell transplantation in newly diagnosed multiple myeloma: a meta-analysis. J Clin Oncol 35(29):3279–3289. https://doi.org/10.1200/JCO.2017.72.6679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boschmans J, de Bruijn E, Van Schil P, Lemiere F (2013) Analysis of novel melphalan hydrolysis products formed under isolated lung perfusion conditions using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 27(7):835–841. https://doi.org/10.1002/rcm.6515

    Article  CAS  PubMed  Google Scholar 

  10. Dewaele D, Sobott F, Lemiere F (2016) Covalent adducts of melphalan with free amino acids and a model peptide studied by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 30(6):719–730. https://doi.org/10.1002/rcm.7489

    Article  CAS  PubMed  Google Scholar 

  11. Carulli G, Petrini M, Marini A, Ambrogi F, Ucci G, Riccardi A, Luoni R, Grassi B (1990) P-glycoprotein expression in multiple myeloma. Haematologica 75(3):288–290

    CAS  PubMed  Google Scholar 

  12. Kuhne A, Tzvetkov MV, Hagos Y, Lage H, Burckhardt G, Brockmoller J (2009) Influx and efflux transport as determinants of melphalan cytotoxicity: resistance to melphalan in MDR1 overexpressing tumor cell lines. Biochem Pharmacol 78(1):45–53. https://doi.org/10.1016/j.bcp.2009.03.026

    Article  CAS  PubMed  Google Scholar 

  13. Spanswick VJ, Lowe HL, Newton C, Bingham JP, Bagnobianchi A, Kiakos K, Craddock C, Ledermann JA, Hochhauser D, Hartley JA (2012) Evidence for different mechanisms of 'unhooking' for melphalan and cisplatin-induced DNA interstrand cross-links in vitro and in clinical acquired resistant tumour samples. BMC Cancer 12:436. https://doi.org/10.1186/1471-2407-12-436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ishibashi M, Tamura H, Sunakawa M, Kondo-Onodera A, Okuyama N, Hamada Y, Moriya K, Choi I, Tamada K, Inokuchi K (2016) Myeloma drug resistance induced by binding of myeloma B7-H1 (PD-L1) to PD-1. Cancer Immunol Res 4(9):779–788. https://doi.org/10.1158/2326-6066.CIR-15-0296

    Article  CAS  PubMed  Google Scholar 

  15. Barlogie B, Alexanian R, Smallwood L, Cheson B, Dixon D, Dicke K, Cabanillas F (1988) Prognostic factors with high-dose melphalan for refractory multiple myeloma. Blood 72(6):2015–2019

    CAS  PubMed  Google Scholar 

  16. Kaiser M, Lamottke B, Mieth M, Jensen MR, Quadt C, Garcia-Echeverria C, Atadja P, Heider U, von Metzler I, Turkmen S, Sezer O (2010) Synergistic action of the novel HSP90 inhibitor NVP-AUY922 with histone deacetylase inhibitors, melphalan, or doxorubicin in multiple myeloma. Eur J Haematol 84(4):337–344. https://doi.org/10.1111/j.1600-0609.2009.01403.x

    Article  CAS  PubMed  Google Scholar 

  17. Lamottke B, Kaiser M, Mieth M, Heider U, Gao Z, Nikolova Z, Jensen MR, Sterz J, von Metzler I, Sezer O (2012) The novel, orally bioavailable HSP90 inhibitor NVP-HSP990 induces cell cycle arrest and apoptosis in multiple myeloma cells and acts synergistically with melphalan by increased cleavage of caspases. Eur J Haematol 88(5):406–415. https://doi.org/10.1111/j.1600-0609.2012.01764.x

    Article  CAS  PubMed  Google Scholar 

  18. Nimmanapalli R, Gerbino E, Dalton WS, Gandhi V, Alsina M (2008) HSP70 inhibition reverses cell adhesion mediated and acquired drug resistance in multiple myeloma. Br J Haematol 142(4):551–561. https://doi.org/10.1111/j.1365-2141.2008.07217.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Surget S, Lemieux-Blanchard E, Maiga S, Descamps G, Le Gouill S, Moreau P, Amiot M, Pellat-Deceunynck C (2014) Bendamustine and melphalan kill myeloma cells similarly through reactive oxygen species production and activation of the p53 pathway and do not overcome resistance to each other. Leuk Lymphoma 55(9):2165–2173. https://doi.org/10.3109/10428194.2013.871277

    Article  CAS  PubMed  Google Scholar 

  20. Tagde A, Singh H, Kang MH, Reynolds CP (2014) The glutathione synthesis inhibitor buthionine sulfoximine synergistically enhanced melphalan activity against preclinical models of multiple myeloma. Blood Cancer J 4:e229. https://doi.org/10.1038/bcj.2014.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xiong T, Wei H, Chen X, Xiao H (2015) PJ34, a poly(ADP-ribose) polymerase (PARP) inhibitor, reverses melphalan-resistance and inhibits repair of DNA double-strand breaks by targeting the FA/BRCA pathway in multidrug resistant multiple myeloma cell line RPMI8226/R. Int J Oncol 46(1):223–232. https://doi.org/10.3892/ijo.2014.2726

    Article  CAS  PubMed  Google Scholar 

  22. Bellamy WT, Dalton WS, Gleason MC, Grogan TM, Trent JM (1991) Development and characterization of a melphalan-resistant human multiple myeloma cell line. Cancer Res 51(3):995–1002

    CAS  PubMed  Google Scholar 

  23. Jones DR, Wu Z, Chauhan D, Anderson KC, Peng J (2014) A nano ultra-performance liquid chromatography-high resolution mass spectrometry approach for global metabolomics profiling and case study on drug-resistant multiple myeloma. Anal Chem 86(7):3667–3675. https://doi.org/10.1021/ac500476a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maiso P, Huynh D, Moschetta M, Sacco A, Aljawai Y, Mishima Y, Asara JM, Roccaro AM, Kimmelman AC, Ghobrial IM (2015) Metabolic signature identifies novel targets for drug resistance in multiple myeloma. Cancer Res 75(10):2071–2082. https://doi.org/10.1158/0008-5472.CAN-14-3400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ulmer CZ, Yost RA, Chen J, Mathews CE, Garrett TJ (2015) Liquid chromatography-mass spectrometry metabolic and lipidomic sample preparation workflow for suspension-cultured mammalian cells using jurkat T lymphocyte cells. J Proteomics Bioinform 8(6):126–132. https://doi.org/10.4172/jpb.1000360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Patricelli MP, Nomanbhoy TK, Wu J, Brown H, Zhou D, Zhang J, Jagannathan S, Aban A, Okerberg E, Herring C, Nordin B, Weissig H, Yang Q, Lee JD, Gray NS, Kozarich JW (2011) In situ kinase profiling reveals functionally relevant properties of native kinases. Chem Biol 18(6):699–710. https://doi.org/10.1016/j.chembiol.2011.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adam GC, Burbaum J, Kozarich JW, Patricelli MP, Cravatt BF (2004) Mapping enzyme active sites in complex proteomes. J Am Chem Soc 126(5):1363–1368. https://doi.org/10.1021/ja038441g

    Article  CAS  PubMed  Google Scholar 

  28. Chen Q, Van der Sluis PC, Boulware D, Hazlehurst LA, Dalton WS (2005) The FA/BRCA pathway is involved in melphalan-induced DNA interstrand cross-link repair and accounts for melphalan resistance in multiple myeloma cells. Blood 106(2):698–705. https://doi.org/10.1182/blood-2004-11-4286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yarde DN, Oliveira V, Mathews L, Wang X, Villagra A, Boulware D, Shain KH, Hazlehurst LA, Alsina M, Chen DT, Beg AA, Dalton WS (2009) Targeting the Fanconi anemia/BRCA pathway circumvents drug resistance in multiple myeloma. Cancer Res 69(24):9367–9375. https://doi.org/10.1158/0008-5472.CAN-09-2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hazlehurst LA, Enkemann SA, Beam CA, Argilagos RF, Painter J, Shain KH, Saporta S, Boulware D, Moscinski L, Alsina M, Dalton WS (2003) Genotypic and phenotypic comparisons of de novo and acquired melphalan resistance in an isogenic multiple myeloma cell line model. Cancer Res 63(22):7900–7906

    CAS  PubMed  Google Scholar 

  31. Zub KA, Sousa MM, Sarno A, Sharma A, Demirovic A, Rao S, Young C, Aas PA, Ericsson I, Sundan A, Jensen ON, Slupphaug G (2015) Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells. PLoS One 10(3):e0119857. https://doi.org/10.1371/journal.pone.0119857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiang Y, Remily-Wood ER, Oliveira V, Yarde D, He L, Cheng JQ, Mathews L, Boucher K, Cubitt C, Perez L, Gauthier TJ, Eschrich SA, Shain KH, Dalton WS, Hazlehurst L, Koomen JM (2011) Monitoring a nuclear factor-kappaB signature of drug resistance in multiple myeloma. Mol Cell Proteomics 10(11):M110 005520. https://doi.org/10.1074/mcp.M110.005520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gupta V, Singh SV, Ahmad H, Medh RD, Awasthi YC (1989) Glutathione and glutathione S-transferases in a human plasma cell line resistant to melphalan. Biochem Pharmacol 38(12):1993–2000

    Article  CAS  PubMed  Google Scholar 

  34. Medh RD, Gupta V, Awasthi YC (1991) Reversal of melphalan resistance in vivo and in vitro by modulation of glutathione metabolism. Biochem Pharmacol 42(2):439–441

    Article  CAS  PubMed  Google Scholar 

  35. Mulcahy RT, Bailey HH, Gipp JJ (1994) Up-regulation of gamma-glutamylcysteine synthetase activity in melphalan-resistant human multiple myeloma cells expressing increased glutathione levels. Cancer Chemother Pharmacol 34(1):67–71

    Article  CAS  PubMed  Google Scholar 

  36. Tyanova S, Temu T, Carlson A, Sinitcyn P, Mann M, Cox J (2015) Visualization of LC-MS/MS proteomics data in MaxQuant. Proteomics 15(8):1453–1456. https://doi.org/10.1002/pmic.201400449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.P.B.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  38. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13(9):2513–2526. https://doi.org/10.1074/mcp.M113.031591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Adusumilli R, Mallick P (2017) Data conversion with ProteoWizard msConvert. Methods Mol Biol 1550:339–368. https://doi.org/10.1007/978-1-4939-6747-6_23

    Article  CAS  PubMed  Google Scholar 

  40. Katajamaa M, Miettinen J, Oresic M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22(5):634–636. https://doi.org/10.1093/bioinformatics/btk039

    Article  CAS  PubMed  Google Scholar 

  41. Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:395. https://doi.org/10.1186/1471-2105-11-395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966–968. https://doi.org/10.1093/bioinformatics/btq054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37(Web Server):W652–W660. https://doi.org/10.1093/nar/gkp356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6(6):743–760. https://doi.org/10.1038/nprot.2011.319

    Article  CAS  PubMed  Google Scholar 

  45. Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0–making metabolomics more meaningful. Nucleic Acids Res 43(W1):W251–W257. https://doi.org/10.1093/nar/gkv380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jarnuczak AF, Vizcaino JA (2017) Using the PRIDE database and ProteomeXchange for submitting and accessing public proteomics datasets. Curr Protoc Bioinformatics 59:13 31 11–13 31 12. https://doi.org/10.1002/cpbi.30

    Article  Google Scholar 

  47. Ternent T, Csordas A, Qi D, Gomez-Baena G, Beynon RJ, Jones AR, Hermjakob H, Vizcaino JA (2014) How to submit MS proteomics data to ProteomeXchange via the PRIDE database. Proteomics 14(20):2233–2241. https://doi.org/10.1002/pmic.201400120

    Article  CAS  PubMed  Google Scholar 

  48. de Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20(9):1453–1454. https://doi.org/10.1093/bioinformatics/bth078

    Article  CAS  PubMed  Google Scholar 

  49. Saldanha AJ (2004) Java Treeview--extensible visualization of microarray data. Bioinformatics 20(17):3246–3248. https://doi.org/10.1093/bioinformatics/bth349

    Article  CAS  PubMed  Google Scholar 

  50. Turner JG, Kashyap T, Dawson JL, Gomez J, Bauer AA, Grant S, Dai Y, Shain KH, Meads M, Landesman Y, Sullivan DM (2016) XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IkappaBalpha and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Oncotarget 7(48):78896–78909. https://doi.org/10.18632/oncotarget.12969

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ramirez M, Rajaram S, Steininger RJ, Osipchuk D, Roth MA, Morinishi LS, Evans L, Ji W, Hsu CH, Thurley K, Wei S, Zhou A, Koduru PR, Posner BA, Wu LF, Altschuler SJ (2016) Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat Commun 7:10690. https://doi.org/10.1038/ncomms10690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Holman JD, Tabb DL, Mallick P (2014) Employing proteoWizard to convert raw mass spectrometry data. Curr Protoc Bioinformatics 46(13):24 11–24 19. https://doi.org/10.1002/0471250953.bi1324s46

    Article  Google Scholar 

  53. Welsh EA, Eschrich SA, Berglund AE, Fenstermacher DA (2013) Iterative rank-order normalization of gene expression microarray data. BMC Bioinformatics 14:153. https://doi.org/10.1186/1471-2105-14-153

    Article  PubMed  PubMed Central  Google Scholar 

  54. Khin ZP, Ribeiro ML, Jacobson T, Hazlehurst L, Perez L, Baz R, Shain K, Silva AS (2014) A preclinical assay for chemosensitivity in multiple myeloma. Cancer Res 74(1):56–67. https://doi.org/10.1158/0008-5472.CAN-13-2397

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Proteomics & Metabolomics and Cancer Informatics Cores at Moffitt, which are partially funded by the NCI Cancer Center Support Grant (P30-CA076292) and by Moffitt’s Innovation and Technology Pilot Funding (JK/KS). The SECIM at UF is funded by the NIH through U24-DK097209.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Timothy J. Garrett or John M. Koomen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Koomen, D.C. et al. (2019). Proteometabolomics of Melphalan Resistance in Multiple Myeloma. In: Bhattacharya, S. (eds) Metabolomics. Methods in Molecular Biology, vol 1996. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9488-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9488-5_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9487-8

  • Online ISBN: 978-1-4939-9488-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics