Skip to main content

Methods for Investigating TRP Channel Gating

  • Protocol
  • First Online:
TRP Channels

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1987))

Abstract

A complete characterization of temperature -and voltage-activated TRP channel gating requires a precise determination of the absolute probability of opening in a wide range of voltages, temperatures, and agonist concentrations. We have achieved this in the case of the TRPM8 channel expressed in Xenopus laevis oocytes. Measurements covered an extensive range of probabilities and unprecedented applied voltages up to 500 mV. In this chapter, we describe animal care protocols of patch-clamp pipette preparation, temperature control methods, and analysis of ionic currents to obtain reliable absolute open channel probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raddatz N, Castillo JP, Gonzalez C et al (2014) Temperature and voltage coupling to channel opening in transient receptor potential Melastatin 8 (TRPM8). J Biol Chem 289:35438–35454. https://doi.org/10.1074/jbc.M114.612713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Starace DM, Bezanilla F (2004) A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427:548–553

    Article  CAS  Google Scholar 

  3. Major N, Wassersug RJ (1998) Survey of current techniques in the care and maintenance of the African clawed frog (Xenopus laevis). Contemp Top Lab Anim Sci 37:57–60

    PubMed  Google Scholar 

  4. Goldin AL (1992) Maintenance of Xenopus laevis and oocyte injection. Methods Enzymol 207:266–279

    Article  CAS  Google Scholar 

  5. Reed BT (2005) Guidance on the housing and care of the African clawed frog (Xenopus laevis). Research animals department - RSPCA. Southwater, Horsham, West Sussex, UK

    Google Scholar 

  6. Green SL (2009) The laboratory Xenopus sp. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  7. Wu M, Gerhart J (1991) Raising Xenopus in the laboratory. Methods Cell Biol 36:3–18

    Article  CAS  Google Scholar 

  8. Smith LD, Xu WL, Varnold RL (1991) Oogenesis and oocyte isolation. Methods Cell Biol 36:45–60

    Article  CAS  Google Scholar 

  9. Alexander S, Bellerby C (1935) The effect of captivity upon the reproductive cycle of the South African clawed toad (Xenopus laevis). J Exp Biol 12(4):306–314

    Google Scholar 

  10. Morera F, Vargas G, González C et al (2007) Ion-Channel reconstitution. In: Dopico AM (ed) Methods in molecular biology, vol methods in membrane lipids, vol vol 400. Humana Press Inc., Totowa, NJ

    Google Scholar 

  11. Shih OM, Smith RD, Toro L et al (1998) High-level expression and detection of ion channels in Xenopus oocytes. Methods Enzymol 294:529–556

    Google Scholar 

  12. Goldin AL, Simkawa K (1992) Preparation of RNA for injection into Xenopus oocytes. Methods Enzymol 207:279–297

    Article  CAS  Google Scholar 

  13. Krieg PA, Melton DA (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res 12:7057–7070

    Article  CAS  Google Scholar 

  14. Stühmer W, Methfessel C, Sakmann B et al (1987) Patch clamp characterization of sodium channels expressed from rat brain cDNA. Eur Biophys J 13:131–138

    Google Scholar 

  15. Alvarez O, Gonzalez C, Latorre R (2002) Counting channels: a tutorial guide on ion channel fluctuation analysis. Adv Physiol Educ 26:327–341

    Article  Google Scholar 

  16. Sigworth FJ (1980) The variance of sodium current fluctuations at the node of Ranvier. J Physiol 307:97–129

    Article  CAS  Google Scholar 

  17. Poisson SD (1837) Probabilité des jugements en matière criminelle et en matière civile, précédées des règles générales du calcul des probabilitiés. Bachelie, Paris

    Google Scholar 

  18. Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171–178

    Google Scholar 

  19. Ashour SK, Abdel-hameed MA (2010) Approximate skew normal distribution. J Adv Res 1:341–350

    Article  Google Scholar 

  20. Yellen G (1984) Ionic permeation and blockade in Ca2+-activated K+ channels of bovine chromaffin cells. J Gen Physiol 84:157–186. https://doi.org/10.1085/jgp.84.2.157

    Article  CAS  PubMed  Google Scholar 

  21. Elsner HA, Honck HH, Willmann F et al (2000) Poor quality of oocytes from Xenopus laevis used in laboratory experiments: prevention by use of antiseptic surgical technique and antibiotic supplementation. Comp Med 50(2):206–211

    CAS  PubMed  Google Scholar 

  22. OConnell D, Mruk K, Rocheleau JM et al (2011) Xenopus laevis oocytes infected with multi-drug-resistant bacteria: implications for electrical recordings. J Gen Physiol 138(2):271–277. https://doi.org/10.1085/jgp.201110661

    Article  CAS  Google Scholar 

  23. Maroto R, Raso A, Wood TG et al (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7(2):179–185. https://doi.org/10.1038/ncb1218

    Article  CAS  PubMed  Google Scholar 

  24. Yang XC, Sachs F (1990) Characterization of stretch-activated ion channels in Xenopus oocytes. J Physiol 431:103–122

    Article  CAS  Google Scholar 

  25. Zhang Y, Hamill OP (2000) Calcium-, voltage- and osmotic stress-sensitive currents in Xenopus oocytes and their relationship to single mechanically gated channels. J Physiol 523(Pt 1):83–99

    Article  CAS  Google Scholar 

  26. Bard AJ, Parson R, Jordan J (1985) Standard potentials in aqueous solution. Marcel Dekker, Inc, New York

    Google Scholar 

  27. Heinemann SH, Conti F (1993) Nonstationary noise analysis and application to patch clamp recordings. Methods Enzymol 207:131–148

    Article  Google Scholar 

  28. Sigg D, Stefani E, Bezanilla F (1994) Gating current noise produced by elementary transitions in shaker potassium channels. Science 264:578–582

    Article  CAS  Google Scholar 

  29. Cox DH, Cui J, Aldrich RW (1997) Separation of gating properties from permeation and block in mslo large conductance Ca-activated K channels. J Gen Physiol 109:633–646

    Article  CAS  Google Scholar 

  30. Diaz F, Wallner M, Stefani E, Toro L et al (1996) Interaction of internal Ba2+ with a cloned Ca2+-dependent K+ (hslo) channel from smooth muscle. J Gen Physiol (3):399–407. https://doi.org/10.1085/jgp.107.3.399

Download references

Acknowledgments

We thank Miss Luisa Soto for excellent technical assistance, and Dr. Juan Pablo Castillo for his help to the noise analysis method. This work was supported by FONDECYT Grants 1150273 and 1190293 (to R.L.), 1180464 (to C.G.), 1180999 (to K.C), CONICYT-PFCHA/Doctorado Nacional/2017-21170395 (to E.C.). The Centro Interdisciplinario de Neurociencia de Valparaíso is a Millennium Institute (P09-022-F). This work was partially supported by the Air Force Office of Scientific Research under award number FA9550-16-1-0384 to R.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo Alvarez .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alvarez, O., Castillo, K., Carmona, E., Gonzalez, C., Latorre, R. (2019). Methods for Investigating TRP Channel Gating. In: Ferrer-Montiel, A., Hucho, T. (eds) TRP Channels. Methods in Molecular Biology, vol 1987. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9446-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9446-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9445-8

  • Online ISBN: 978-1-4939-9446-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics