Skip to main content

Measuring the Impact of Bile Acids on the Membrane Order of Primary Hepatocytes and Isolated Mitochondria by Fluorescence Imaging and Spectroscopy

  • Protocol
  • First Online:
Experimental Cholestasis Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1981))

Abstract

Cholestasis is characterized by impaired secretion of bile flow that can result in the accumulation of highly abnormal levels of bile acids causing hepatocyte and biliary injury. As amphipathic molecules, bile acids can intercalate in lipid membranes, and pathophysiologic concentrations of bile acids have the potential to induce marked changes in the biophysical properties of biomembranes, including membrane ordering. These effects, particularly on the mitochondrial and plasma membranes, have been proposed to trigger toxicity of bile acids. This chapter details different fluorescence-based methods (fluorescence polarization, and spectroscopy/imaging of solvatochromic dyes) to evaluate the impact of different bile acids on membrane order. Protocols are described for the application of these methods to biomimetic vesicles, isolated mitochondria, and hepatocytes, following a bottom-up approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woolbright BL, Jaeschke H (2012) Novel insight into mechanisms of cholestatic liver injury. World J Gastroenterol 18:4985–4993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li T, Apte U, City K (2016) Bile acid metabolism and signaling in cholestasis, inflammation and cancer. Advances in Pharmacology, San Diego, CA, pp 263–302

    Google Scholar 

  3. Gumpricht E, Devereaux MW, Dahl RH et al (2000) Glutathione status of isolated rat hepatocytes affects bile acid-induced cellular necrosis but not apoptosis. Toxicol Appl Pharmacol 164:102–111

    Article  CAS  PubMed  Google Scholar 

  4. Perez MJ (2009) Bile-acid-induced cell injury and protection. World J Gastroenterol 15:1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rodrigues CM, Fan G, Ma X et al (1998) A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest 101:2790–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amaral JD, Viana RJS, Ramalho RM et al (2009) Bile acids: regulation of apoptosis by ursodeoxycholic acid. J Lipid Res 50:1721–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Palmeira CM, Rolo AP (2004) Mitochondrially-mediated toxicity of bile acids. Toxicology 203:1–15

    Article  CAS  PubMed  Google Scholar 

  8. Hofmann AF (1999) The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 159:2647–2658

    Article  CAS  PubMed  Google Scholar 

  9. Sodeman T, Bronk SF, Roberts PJ et al (2000) Bile salts mediate hepatocyte apoptosis by increasing cell surface trafficking of Fas. Am J Physiol Liver Physiol 278:G992–G999

    CAS  Google Scholar 

  10. Rodrigues CM, Fan G, Wong PY et al (1998) Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med 4:165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Castro RE, Amaral JD, Solá S et al (2007) Differential regulation of cyclin D1 and cell death by bile acids in primary rat hepatocytes. Am J Physiol Gastrointest Liver Physiol 293:G327–G334

    Article  CAS  PubMed  Google Scholar 

  12. Mello-Vieira J, Sousa T, Coutinho A et al (2013) Cytotoxic bile acids, but not cytoprotective species, inhibit the ordering effect of cholesterol in model membranes at physiologically active concentrations. Biochim Biophys Acta 1828:2152–2163

    Article  CAS  PubMed  Google Scholar 

  13. Benz C, Angermüller S, Otto G et al (2000) Effect of tauroursodeoxycholic acid on bile acid-induced apoptosis in primary human hepatocytes. Eur J Clin Investig 30:203–209

    Article  CAS  Google Scholar 

  14. Zhou Y, Maxwell KN, Sezgin E et al (2013) Bile acids modulate signaling by functional perturbation of plasma membrane domains. J Biol Chem 288:35660–35670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sousa T, Castro RE, Pinto SN et al (2015) Deoxycholic acid modulates cell death signaling through changes in mitochondrial membrane properties. J Lipid Res 56:2158–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bogner C, Leber B, Andrews DW (2010) Apoptosis: Embedded in membranes. Curr Opin Cell Biol 22:845–851

    Article  CAS  PubMed  Google Scholar 

  17. Schug ZT, Gottlieb E (2009) Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. Biochim Biophys Acta 1788:2022–2031

    Article  CAS  PubMed  Google Scholar 

  18. Yeung T, Gilbert GE, Shi J et al (2008) Membrane phosphatidylserine regulates surface charge and protein localization. Science 319:210–213

    Article  CAS  PubMed  Google Scholar 

  19. Lentz BR (1989) Membrane “fluidity” as detected by diphenylhexatriene probes. Chem Phys Lipids 50:171–190

    Article  CAS  Google Scholar 

  20. Sanchez SA, Tricerri MA, Gunther G et al (2007) Laurdan generalized polarization: from cuvette to microscope. Mod Res Educ Top Microsc:1007–1014

    Google Scholar 

  21. Owen DM, Rentero C, Magenau A et al (2012) Quantitative imaging of membrane lipid order in cells and organisms. Nat Protoc 7:24–35

    Article  CAS  Google Scholar 

  22. Amaro M, Reina F, Hof M et al (2017) Laurdan and Di-4-ANEPPDHQ probe different properties of the membrane. J Phys D Appl Phys 50:134004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Parasassi T, Gratton E, Yu WM et al (1997) Two-photon fluorescence microscopy of Laurdan generalized polarization domains in model and natural membranes. Biophys J 72:2413–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chan Y-HM, Boxer SG (2007) Model membrane systems and their applications. Curr Opin Chem Biol 11:581–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Loura LMS, Prieto M, Fernandes F (2010) Quantification of protein-lipid selectivity using FRET. Eur Biophys J 39:565–578

    Article  CAS  PubMed  Google Scholar 

  26. Dietrich C, Bagatolli LA, Volovyk ZN et al (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sarmento MJ, Pinto SN, Coutinho A et al (2016) Accurate quantification of inter-domain partition coefficients in GUVs exhibiting lipid phase coexistence. RSC Adv 6:66641–66649

    Article  CAS  Google Scholar 

  28. Botla R, Spivey J, Aguilar H et al (1995) Ursodeoxycholate (UDCA) inhibits the mitochondrial membrane permeability transition induced by glycochenodeoxycholate: a mechanism of UDCA cytoprotection. J Pharmacol Exp Ther 272:930–938

    CAS  PubMed  Google Scholar 

  29. Walajtys-Rhode E, Zapatero J, Moehren G et al (1992) The role of the matrix calcium level in the enhancement of mitochondrial pyruvate carboxylation by glucagon pretreatment. J Biol Chem 267:370–379

    Article  CAS  PubMed  Google Scholar 

  30. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  31. Kinosita K, Ikegami A, Kawato S (1982) On the wobbling-in-cone analysis of fluorescence anisotropy decay. Biophys J 37:461–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodrigues CM, Ma X, Linehan-Stieers C et al (1999) Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane depolarization and channel formation. Cell Death Differ 6:842–854

    Article  CAS  PubMed  Google Scholar 

  33. Sokol RJ, Devereaux M, Mierau GW et al (1990) Oxidant injury to hepatic mitochondrial lipids in rats with dietary copper overload. Modification by vitamin E deficiency. Gastroenterology 99:1061–1071

    Article  CAS  PubMed  Google Scholar 

  34. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  35. Mariash CN, Seelig S, Schwartz HL et al (1986) Rapid synergistic interaction between thyroid hormone and carbohydrate on mRNAS14 induction. J Biol Chem 261:9583–9586

    Article  CAS  PubMed  Google Scholar 

  36. Castro RE, Ferreira DMS, Zhang X et al (2010) Identification of microRNAs during rat liver regeneration after partial hepatectomy and modulation by ursodeoxycholic acid. Am J Physiol Gastrointest Liver Physiol 299:G887–G897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Castro RE, Ferreira DMS, Afonso MB et al (2013) miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J Hepatol 58:119–125

    Article  CAS  PubMed  Google Scholar 

  38. McClare CW (1971) An accurate and convenient organic phosphorus assay. Anal Biochem 39:527–530

    Article  CAS  PubMed  Google Scholar 

  39. Pinto SN, Silva LC, de Almeida RFM et al (2008) Membrane domain formation, interdigitation, and morphological alterations induced by the very long chain asymmetric C24:1 ceramide. Biophys J 95:2867–2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Parasassi T, Gratton E (1995) Membrane lipid domains and dynamics as detected by laurdan fluorescence. J Fluoresc 5:59–69

    Article  CAS  PubMed  Google Scholar 

  41. Monte M-J (2009) Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol 15:804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bagatolli LA, Sanchez SA, Hazlett T et al (2003) Giant vesicles, Laurdan, and two-photon fluorescence microscopy: evidence of lipid lateral separation in bilayers. Methods Enzymol 360:481–500

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sousa, T., Castro, R.E., Coutinho, A., Rodrigues, C.M.P., Prieto, M., Fernandes, F. (2019). Measuring the Impact of Bile Acids on the Membrane Order of Primary Hepatocytes and Isolated Mitochondria by Fluorescence Imaging and Spectroscopy. In: Vinken, M. (eds) Experimental Cholestasis Research. Methods in Molecular Biology, vol 1981. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9420-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9420-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9419-9

  • Online ISBN: 978-1-4939-9420-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics