Skip to main content

Evaluation of Embryotoxicity Using the Zebrafish Model

  • Protocol
  • First Online:
Drug Safety Evaluation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1641))

Abstract

The embryonic zebrafish model offers the power of whole-animal investigations (e.g., intact organism, functional homeostatic feedback mechanisms, and intercellular signaling) with the convenience of cell culture (e.g., cost- and time-efficient, minimal infrastructure, small quantities of solutions required). The model system overcomes many of the current limitations in rapid to high-throughput screening of drugs/compounds and casts a broad net to rapidly evaluate integrated system effects. Additionally, it is an ideal platform to follow up with targeted studies aimed at the mechanisms of toxic action. Exposures are carried out in multi-well plates so minimal solution volumes are required for the assessments. Numerous morphological, developmental, and behavioral endpoints can be evaluated noninvasively due to the transparent nature of the embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harper SL et al (2008) Proactively designing nanomaterials to enhance performance and minimise hazard. Int J Nanotechnol 5(1):124–142

    Article  CAS  Google Scholar 

  2. Reif DM et al (2016) High-throughput characterization of chemical-associated embryonic behavioral changes predicts teratogenic outcomes. Arch Toxicol 90(6):1459–1470

    Article  CAS  PubMed  Google Scholar 

  3. Truong L et al (2014) Multidimensional in vivo hazard assessment using zebrafish. Toxicol Sci 137(1):212–233

    Article  CAS  PubMed  Google Scholar 

  4. Levin ED et al (2004) Developmental chlorpyrifos effects on hatchling zebrafish swimming behavior. Neurotoxicol Teratol 26(6):719–723

    Article  CAS  PubMed  Google Scholar 

  5. Blechinger SR et al (2002) Developmental toxicology of cadmium in living embryos of a stable transgenic zebrafish line. Environ Health Perspect 110(10):1041–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rasooly RS et al (2003) Genetic and genomic tools for zebrafish research: the NIH zebrafish initiative. Dev Dyn 228(3):490–496

    Article  CAS  PubMed  Google Scholar 

  7. Rubinstein AL (2003) Zebrafish: from disease modeling to drug discovery. Curr Opin Drug Discov Devel 6(2):218–223

    CAS  PubMed  Google Scholar 

  8. Spitsbergen J, Kent M (2003) The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations. Toxicol Pathol 31:62–87

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Howe K et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kimmel CB et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310

    Article  CAS  PubMed  Google Scholar 

  11. Westerfield M (1995) The Zebrafish Book. University of Oregon Press, Eugene

    Google Scholar 

  12. Henken DB et al (2003) Recent papers on Zebrafish and other aquarium fish models. Zebrafish 1:305–311

    Google Scholar 

  13. Akimenko MA et al (1995) Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development 121(2):347–357

    CAS  PubMed  Google Scholar 

  14. Martinez-Sales M, Garcia-Ximenez F, Espinos FJ (2015) Zebrafish (Danio rerio) as a possible bioindicator of epigenetic factors present in drinking water that may affect reproductive function: is chorion an issue? Zygote 23(3):447–452

    Article  CAS  PubMed  Google Scholar 

  15. Henn K, Braunbeck T (2011) Dechorionation as a tool to improve the fish embryo toxicity test (FET) with the zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 153(1):91–98

    Article  PubMed  Google Scholar 

  16. Kim KT, Tanguay RL (2014) The role of chorion on toxicity of silver nanoparticles in the embryonic zebrafish assay. Environ Health Toxicol 29:e2014021

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mandrell D et al (2012) Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens. J Lab Autom 17(1):66–74

    Article  PubMed  PubMed Central  Google Scholar 

  18. Harper S et al (2008) In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalisation and route of exposure. J Exp Nanosci 3(3):195–206

    Article  CAS  Google Scholar 

  19. Olivares CI et al (2016) Arsenic (III, V), indium (III), and gallium (III) toxicity to zebrafish embryos using a high-throughput multi-endpoint in vivo developmental and behavioral assay. Chemosphere 148:361–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Noyes PD et al (2015) Advanced morphological—behavioral test platform reveals neurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants. Toxicol Sci 145(1):177–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Busquet F et al (2008) Development of a new screening assay to identify proteratogenic substances using zebrafish Danio rerio embryo combined with an exogenous mammalian metabolic activation system (mDarT). Toxicol Sci 104(1):177–188

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center at Oregon State University where much of the protocols were developed. This work was supported by NIEHS grants P30 ES000210.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Tanguay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Truong, L., Tanguay, R.L. (2017). Evaluation of Embryotoxicity Using the Zebrafish Model. In: Gautier, JC. (eds) Drug Safety Evaluation. Methods in Molecular Biology, vol 1641. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7172-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7172-5_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7170-1

  • Online ISBN: 978-1-4939-7172-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics