Skip to main content

Artificial Nucleosides as Diagnostic Probes to Measure Translesion DNA Synthesis

  • Protocol
  • First Online:
Non-Natural Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1973))

  • 845 Accesses

Abstract

The misreplication of damaged DNA, a biological process termed translesion DNA synthesis (TLS), produces a large number of adverse effects on human health. This chapter describes the application of an artificial nucleoside/nucleotide system that functions as a biochemical probe to quantify TLS activity under in vitro and in vivo conditions. For in vitro studies, the artificial nucleotide, 3-ethynyl-5-nitroindolyl-2′-deoxyriboside triphosphate (3-Eth-5-NITP), is used as it is efficiently inserted opposite an abasic site, a highly pro-mutagenic DNA lesion produced by several types of DNA-damaging agents. The placement of the ethynyl moiety allows the incorporated nucleoside triphosphate to be selectively tagged with azide-containing fluorophores via “click” chemistry. This reaction provides a facile way to quantify the extent of nucleotide incorporation opposite this and other noninstructional DNA lesions. The corresponding nucleoside, 3-Eth-5-NIdR, can be used to monitor TLS activity in hematological and adherent cancer cells treated with compounds that produce noninstructional DNA lesions. As described above, visualizing the replication of these lesions is achieved using copper-catalyzed “click” chemistry to tag the ethynyl moiety present on the nucleotide with fluorogenic probes. This technique represents a new diagnostic approach to quantify TLS activity inside cells. In addition, the application of this “clickable” nucleoside provides a chemical probe to identify cells that become drug resistant by the facile replication of noninstructional DNA lesions produced by DNA-damaging agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenberg MM (2012) The formamidopyrimidines: purine lesions formed in competition with 8-oxopurines from oxidative stress. Acc Chem Res 45:588–597

    Article  CAS  Google Scholar 

  2. Cadet J, Douki T, Ravanat JL (2008) Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Acc Chem Res 41:1075–1083

    Article  CAS  Google Scholar 

  3. Neeley WL, Essigmann JM (2006) Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem Res Toxicol 19:491–505

    Article  CAS  Google Scholar 

  4. Krokan HE, Bjørås M (2013) Base excision repair. Cold Spring Harb Perspect Biol 5:a012583

    Article  PubMed Central  Google Scholar 

  5. Spivak G (2015) Nucleotide excision repair in humans. DNA Repair (Amst) 36:13–18

    Article  CAS  Google Scholar 

  6. Jasin M, Rothstein R (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5:a012740

    Article  PubMed Central  Google Scholar 

  7. Goodman MF, Tippin B (2000) Sloppier copier DNA polymerases involved in genome repair. Curr Opin Genet Dev 10:162–168

    Article  CAS  Google Scholar 

  8. Goodman MF, Woodgate R (2013) Translesion DNA polymerases. Cold Spring Harb Perspect Biol 5:a010363

    Article  PubMed Central  Google Scholar 

  9. Sale JE (2013) Translesion DNA synthesis and mutagenesis in eukaryotes. Cold Spring Harb Perspect Biol 5:a012708

    Article  PubMed Central  Google Scholar 

  10. Sutton MD, Walker GC (2001) Managing DNA polymerases: coordinating DNA replication, DNA repair, and DNA recombination. Proc Natl Acad Sci U S A 98:8342–8349

    Article  CAS  PubMed Central  Google Scholar 

  11. Zhao L, Washington MT (2017) Translesion synthesis: insights into the selection and switching of DNA polymerases. Genes (Basel) 8(1). pii: E24

    Google Scholar 

  12. Zhao J, Yu S, Zheng Y, Yang H, Zhang J (2017) Oxidative modification and its implications for the neurodegeneration of Parkinson’s disease. Mol Neurobiol 54:1404–1418

    Article  CAS  Google Scholar 

  13. Makridakis NM, Reichardt JK (2012) Translesion DNA polymerases and cancer. Front Genet 3:174

    Article  CAS  PubMed Central  Google Scholar 

  14. Kunz BA, Straffon AF, Vonarx EJ (2000) DNA damage-induced mutation: tolerance via translesion synthesis. Mutat Res 451:169–185

    Article  CAS  Google Scholar 

  15. Calderón-Montaño JM, Burgos-Morón E, Orta ML, López-Lázaro M (2014) Effect of DNA repair deficiencies on the cytotoxicity of drugs used in cancer therapy – a review. Curr Med Chem 21:3419–3454

    Article  Google Scholar 

  16. Nicolay NH, Helleday T, Sharma RA (2012) Biological relevance of DNA polymerase β and translesion synthesis polymerases to cancer and its treatment. Curr Mol Pharmacol 5:54–67

    Article  CAS  Google Scholar 

  17. Roy U, Schärer OD (2016) Involvement of translesion synthesis DNA polymerases in DNA interstrand crosslink repair. DNA Repair (Amst) 44:33–41

    Article  CAS  Google Scholar 

  18. Haynes B, Saadat N, Myung B, Shekhar MP (2015) Crosstalk between translesion synthesis, Fanconi anemia network, and homologous recombination repair pathways in interstrand DNA crosslink repair and development of chemoresistance. Mutat Res Rev Mutat Res 763:258–266

    Article  CAS  Google Scholar 

  19. Salehan MR, Morse HR (2013) DNA damage repair and tolerance: a role in chemotherapeutic drug resistance. Br J Biomed Sci 70:31–40

    Article  CAS  Google Scholar 

  20. Devadoss B, Lee I, Berdis AJ (2013) Spectroscopic analysis of polymerization and exonuclease proofreading by a high-fidelity DNA polymerase during translesion DNA synthesis. Biochim Biophys Acta 1834:34–45

    Article  CAS  Google Scholar 

  21. Motea EA, Lee I, Berdis AJ (2012) A non-natural nucleoside with combined therapeutic and diagnostic activities against leukemia. ACS Chem Biol 7:988–998

    Article  CAS  PubMed Central  Google Scholar 

  22. Motea EA, Lee I, Berdis AJ (2012) Development of a ‘clickable’ non-natural nucleotide to visualize the replication of non-instructional DNA lesions. Nucleic Acids Res 40:2357–2367

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Berdis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Choi, JS., Berdis, A. (2019). Artificial Nucleosides as Diagnostic Probes to Measure Translesion DNA Synthesis. In: Shank, N. (eds) Non-Natural Nucleic Acids. Methods in Molecular Biology, vol 1973. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9216-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9216-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9215-7

  • Online ISBN: 978-1-4939-9216-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics