Skip to main content

In Vivo Editing of the Adult Mouse Liver Using CRISPR/Cas9 and Hydrodynamic Tail Vein Injection

  • Protocol
  • First Online:
CRISPR Gene Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1961))

Abstract

CRISPR/Cas9 technology allows facile modification of the genome in virtually any desired way through the use of easily designed plasmid constructs that express a gRNA targeting a genomic site-of-interest and Cas9. Hydrodynamic tail vein injection, on the other hand, is a simple method to deliver “naked” plasmid DNA to 5–40% of the hepatocytes of the liver of adult mice. Here, we describe how these two techniques can be combined to create a workflow for fast, easy, and cost-efficient in vivo genome editing of the adult mouse liver. Using this method, large cohorts of mice with genetically modified livers can be established within 3 weeks to generate models for gene function in normal physiology and diseases of the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang G, Budker V, Wolff JA (1999) High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Gene Ther 5:272–276

    Google Scholar 

  2. Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6:1258–1266

    Article  CAS  Google Scholar 

  3. Zhang G, Gao X, Song YK, Vollmer R, Stolz DB, Gasiorowski JZ, Dean DA, Liu D (2004) Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther 11:675–682

    Article  CAS  Google Scholar 

  4. Kobayashi N, Nishikawa M, Hirata K, Takakura Y (2004) Hydrodynamics-based procedure involves transient hyperpermeability in the hepatic cellular membrane: implication of a nonspecific process in efficient intracellular gene delivery. J Gene Med 6:584–592

    Article  CAS  Google Scholar 

  5. Budker VG, Subbotin VM, Budker T, Sebestyén MG, Zhang G, Wolff JA (2006) Mechanism of plasmid delivery by hydrodynamic tail vein injection. II. Morphological studies. J Gene Med 8:874–888

    Article  CAS  Google Scholar 

  6. Xu C, Qi X, Du X, Zou H, Gao F, Feng T, Lu H, Li S, An X, Zhang L, Wu Y, Liu Y, Li N, Capecchi MR, Wu S (2017) piggyBac mediates efficient in vivo CRISPR library screening for tumorigenesis in mice. Proc Natl Acad Sci U S A 114:722–727

    Article  CAS  Google Scholar 

  7. Zhang G, Song YK, Liu D (2000) Long-term expression of human aplha1-antitrypsin gene in mouse liver achieved by intravenous administration of plasmid DNA using a hydrodynamics-based procedure. Gene Ther 7:1344–1349

    Article  CAS  Google Scholar 

  8. Weber J, Öllinger R, Friedrich M, Ehmer U, Barenboim M, Steiger K, Heid I, Mueller S, Maresch R, Engleitner T, Gross N, Geumann U, Fu B, Segler A, Yuan D, Lange S, Strong A, de la Rosa J, Esposito I, Liu P, Cadiñanos J, Vassiliou GS, Schmid RM, Schneider G, Unger K, Yang F, Braren R, Heikenwälder M, Varela I, Saur D, Bradley A, Rad R (2015) CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc Natl Acad Sci U S A 112:13982–13987

    Article  CAS  Google Scholar 

  9. Hu J, Che L, Li L, Pilo MG, Cigliano A, Ribback S, Li X, Latte G, Mela M, Evert M, Dombrowski F, Zheng G, Chen X, Calvisi DF (2016) Co-activation of AKT and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice. Sci Rep 6:20484

    Article  CAS  Google Scholar 

  10. Bonamassa B, Hai L, Liu D (2011) Hydrodynamic gene delivery and its applications in pharmaceutical research. Pharm Res 28:694–701

    Article  CAS  Google Scholar 

  11. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32:551–533

    Article  CAS  Google Scholar 

  12. Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, Crowley DG, Zhang F, Anderson DG, Sharp PA, Jacks T (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514:380–384

    Article  CAS  Google Scholar 

  13. Engelholm LH, Riaz A, Serra D, Dagnæs-Hansen F, Johansen JV, Santoni-Rugiu E, Hansen SH, Niola F, Frödin M (2017) CRISPR/Cas9 engineering of adult mouse liver demonstrates that the Dnajb1-Prkaca gene fusion is sufficient to induce tumors resembling fibrolamellar hepatocellular carcinoma. Gastroenterology 153:1662–1673

    Article  CAS  Google Scholar 

  14. Kastenhuber ER, Lalazar G, Houlihan SL, Tschaharganeh DF, Baslan T, Chen CC, Requena D, Tian S, Bosbach B, Wilkinson JE, Simon SM, Lowe SW (2017) DNAJB1-PRKACA fusion kinase interacts with β-catenin and the liver regenerative response to drive fibrolamellar hepatocellular carcinoma. Proc Natl Acad Sci U S A 114:13076–13084

    Article  CAS  Google Scholar 

  15. Hodgkins A, Farne A, Perera S, Grego T, Parry-Smith DJ, Skarnes WC, Iyer V (2015) WGE: a CRISPR database for genome engineering. Bioinformatics 31:3078–3080

    Article  CAS  Google Scholar 

  16. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  17. Lonowski LA, Narimatsu Y, Riaz A, Delay CE, Yang Z, Niola F, Duda K, Ober EA, Clausen H, Wandall HH, Hansen SH, Bennett EP, Frödin M (2017) Genome editing using FACS enrichment of nuclease-expressing cells and indel detection by amplicon analysis. Nat Protoc 12:581–603

    Article  CAS  Google Scholar 

  18. Güell M, Yang L, Church GM (2014) Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA). Bioinformatics 30:2968–2970

    Article  Google Scholar 

  19. Brinkman EK, Chen T, Amendola M, van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42:e168

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Danish Cancer Society (R146-A9563-B3551 to F.N. and R124-A7632-15-S2 to M.F.), the Danish Council for Independent Research (DFF-Mobilex 4092-00235 to F.N.), and the Novo Nordisk Foundation (NNF17OC0028380 to M.F.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Frödin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Niola, F., Dagnæs-Hansen, F., Frödin, M. (2019). In Vivo Editing of the Adult Mouse Liver Using CRISPR/Cas9 and Hydrodynamic Tail Vein Injection. In: Luo, Y. (eds) CRISPR Gene Editing. Methods in Molecular Biology, vol 1961. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9170-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9170-9_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9169-3

  • Online ISBN: 978-1-4939-9170-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics