Skip to main content

Establishment and Analysis of a 3D Co-Culture Spheroid Model of Pancreatic Adenocarcinoma for Application in Drug Discovery

  • Protocol
  • First Online:
Target Identification and Validation in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1953))

Abstract

The high attrition rate of oncology drug candidates can be in part explained by the disconnect between the standard preclinical models (e.g., 2D culture, xenograft tumors) commonly employed for drug discovery and the complex multicellular microenvironment of human cancers. As such, significant focus has recently shifted to the establishment of preclinical models that more closely recapitulate human tumors, such as patient-derived xenografts, 3D spheroids, humanized mice, and mixed-culture models. For these models to be suited to drug discovery, they should optimally exhibit reproducibility, high-throughput, and robust and simple assay readouts. In this article, we describe a protocol for the generation of an in vitro 3D co-culture spheroid model that recapitulates the interaction of tumor cells with stromal fibroblasts in pancreatic adenocarcinoma. We additionally describe protocols relevant to the analysis of these spheroids in high-throughput drug discovery campaigns such as the assessment of spheroid proliferation, immunofluorescence and immunohistochemistry staining of spheroids, live-cell and confocal imaging and analysis of cell surface markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hutchinson L, Kirk R (2011) High drug attrition rates—where are we going wrong? Nat Rev Clin Oncol 8(4):189–190

    Article  PubMed  Google Scholar 

  2. Cook D, Brown D, Alexander R et al (2014) Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov 13(6):419–431

    Article  CAS  PubMed  Google Scholar 

  3. Pammolli F, Magazzini L, Riccaboni M (2011) The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov 10(6):428–438

    Article  CAS  PubMed  Google Scholar 

  4. Paul SM, Mytelka DS, Dunwiddie CT et al (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9(3):203–214

    Article  CAS  PubMed  Google Scholar 

  5. Wilding JL, Bodmer WF (2014) Cancer cell lines for drug discovery and development. Cancer Res 74(9):2377–2384

    Article  CAS  PubMed  Google Scholar 

  6. Selby M, Delosh R, Laudeman J et al (2017) 3D models of the NCI60 cell lines for screening oncology compounds. SLAS Discov 22(5):473–483

    CAS  PubMed  Google Scholar 

  7. Benien P, Swami A (2014) 3D tumor models: history, advances and future perspectives. Future Oncol 10(7):1311–1327

    Article  CAS  PubMed  Google Scholar 

  8. Byrne AT, Alferez DG, Amant F et al (2017) Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer 17(4):254–268

    Article  CAS  PubMed  Google Scholar 

  9. Malaney P, Nicosia SV, Dave V (2014) One mouse, one patient paradigm: new avatars of personalized cancer therapy. Cancer Lett 344(1):1–12

    Article  CAS  PubMed  Google Scholar 

  10. Clevers H (2016) Modeling development and disease with organoids. Cell 165(7):1586–1597

    Article  CAS  PubMed  Google Scholar 

  11. Miller KD, Siegel RL, Lin CC et al (2016) Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 66(4):271–289

    Article  PubMed  Google Scholar 

  12. Rahib L, Smith BD, Aizenberg R et al (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11):2913–2921

    Article  CAS  PubMed  Google Scholar 

  13. Hwang CI, Boj SF, Clevers H et al (2016) Preclinical models of pancreatic ductal adenocarcinoma. J Pathol 238(2):197–204

    Article  PubMed  Google Scholar 

  14. Heinemann V, Reni M, Ychou M et al (2014) Tumour-stroma interactions in pancreatic ductal adenocarcinoma: rationale and current evidence for new therapeutic strategies. Cancer Treat Rev 40(1):118–128

    Article  CAS  PubMed  Google Scholar 

  15. Amrutkar M, Gladhaug IP (2017) Pancreatic cancer chemoresistance to gemcitabine. Cancers 9(11):E157

    Article  PubMed  Google Scholar 

  16. Lakiotaki E, Sakellariou S, Evangelou K et al (2016) Vascular and ductal elastotic changes in pancreatic cancer. APMIS 124(3):181–187

    Article  CAS  PubMed  Google Scholar 

  17. Olive KP, Jacobetz MA, Davidson CJ et al (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324(5933):1457–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Provenzano PP, Cuevas C, Chang AE et al (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21(3):418–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heid I, Steiger K, Trajkovic-Arsic M et al (2017) Co-clinical assessment of tumor cellularity in pancreatic cancer. Clin Cancer Res 23(6):1461–1470

    Article  CAS  PubMed  Google Scholar 

  20. Janes MR, Zhang J, Li LS et al (2018) Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell 172(3):578–589 e517

    Article  CAS  PubMed  Google Scholar 

  21. Hirt UA, Waizenegger IC, Schweifer N et al (2018) Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype. Oncogene 7(2):21

    Article  Google Scholar 

  22. Luca AC, Mersch S, Deenen R et al (2013) Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One 8(3):e59689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10):839–845

    Article  CAS  PubMed  Google Scholar 

  24. Tsunoda T, Takashima Y, Fujimoto T et al (2010) Three-dimensionally specific inhibition of DNA repair-related genes by activated KRAS in colon crypt model. Neoplasia 12(5):397–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zanoni M, Piccinini F, Arienti C et al (2016) 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep 6:19103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dhurjati R, Krishnan V, Shuman LA et al (2008) Metastatic breast cancer cells colonize and degrade three-dimensional osteoblastic tissue in vitro. Clin Exp Metastasis 25(7):741–752

    Article  CAS  PubMed  Google Scholar 

  27. Price KJ, Tsykin A, Giles KM et al (2012) Matrigel basement membrane matrix influences expression of microRNAs in cancer cell lines. Biochem Biophys Res Commun 427(2):343–348

    Article  CAS  PubMed  Google Scholar 

  28. Roife D, Dai B, Kang Y et al (2016) Ex vivo testing of patient-derived xenografts mirrors the clinical outcome of patients with pancreatic ductal adenocarcinoma. Clin Cancer Res 22(24):6021–6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahonen I, Akerfelt M, Toriseva M et al (2017) A high-content image analysis approach for quantitative measurements of chemosensitivity in patient-derived tumor microtissues. Sci Rep 7(1):6600

    Article  PubMed  PubMed Central  Google Scholar 

  30. Francone TD, Landmann RG, Chen CT et al (2007) Novel xenograft model expressing human hepatocyte growth factor shows ligand-dependent growth of c-Met-expressing tumors. Mol Cancer Ther 6(4):1460–1466

    Article  CAS  PubMed  Google Scholar 

  31. Finnberg NK, Gokare P, Lev A et al (2017) Application of 3D tumoroid systems to define immune and cytotoxic therapeutic responses based on tumoroid and tissue slice culture molecular signatures. Oncotarget 8(40):66747–66757

    Article  PubMed  PubMed Central  Google Scholar 

  32. Koerfer J, Kallendrusch S, Merz F et al (2016) Organotypic slice cultures of human gastric and esophagogastric junction cancer. Cancer Med 5(7):1444–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hirakawa T, Yashiro M, Doi Y et al (2016) Pancreatic fibroblasts stimulate the motility of pancreatic cancer cells through IGF1/IGF1R signaling under hypoxia. PLoS One 11(8):e0159912

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stockert JC, Horobin RW, Colombo LL et al (2018) Tetrazolium salts and formazan products in Cell Biology: viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem 120(3):159–167

    Article  CAS  PubMed  Google Scholar 

  35. Jacobi N, Seeboeck R, Hofmann E et al (2017) Organotypic three-dimensional cancer cell cultures mirror drug responses in vivo: lessons learned from the inhibition of EGFR signaling. Oncotarget 8(64):107423–107440

    Article  PubMed  PubMed Central  Google Scholar 

  36. Murphy KC, Fang SY, Leach JK (2014) Human mesenchymal stem cell spheroids in fibrin hydrogels exhibit improved cell survival and potential for bone healing. Cell Tissue Res 357(1):91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Magidson V, Khodjakov A (2013) Circumventing photodamage in live-cell microscopy. Methods Cell Biol 114:545–560

    Article  PubMed  Google Scholar 

  38. Renier N, Wu Z, Simon DJ et al (2014) iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159(4):896–910

    Article  CAS  PubMed  Google Scholar 

  39. Costa EC, Moreira AF, de Melo-Diogo D et al (2018) Polyethylene glycol molecular weight influences the ClearT2 optical clearing method for spheroids imaging by confocal laser scanning microscopy. J Biomed Opt 23(5):1–11

    Article  PubMed  Google Scholar 

  40. Greenbaum A, Jang MJ, Challis C et al (2017) Q&A: How can advances in tissue clearing and optogenetics contribute to our understanding of normal and diseased biology. BMC Biol 15(1):87

    Article  PubMed  PubMed Central  Google Scholar 

  41. Carpenter AE, Jones TR, Lamprecht MR et al (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100

    Article  PubMed  PubMed Central  Google Scholar 

  42. Verveer PJ, Swoger J, Pampaloni F et al (2007) High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy. Nat Methods 4(4):311–313

    Article  CAS  PubMed  Google Scholar 

  43. Lorenzo C, Frongia C, Jorand R et al (2011) Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy. Cell Div 6:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kuen J, Darowski D, Kluge T et al (2017) Pancreatic cancer cell/fibroblast co-culture induces M2 like macrophages that influence therapeutic response in a 3D model. PLoS One 12(7):e0182039

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rodenhizer D, Gaude E, Cojocari D et al (2016) A three-dimensional engineered tumour for spatial snapshot analysis of cell metabolism and phenotype in hypoxic gradients. Nat Mater 15(2):227–234

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Sanderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meier-Hubberten, J.C., Sanderson, M.P. (2019). Establishment and Analysis of a 3D Co-Culture Spheroid Model of Pancreatic Adenocarcinoma for Application in Drug Discovery. In: Moll, J., Carotta, S. (eds) Target Identification and Validation in Drug Discovery. Methods in Molecular Biology, vol 1953. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9145-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9145-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9144-0

  • Online ISBN: 978-1-4939-9145-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics