Skip to main content

Generalized Transduction

  • Protocol
Bacteriophages

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 501))

Abstract

Transduction is the process in which bacterial DNA is transferred from one bacterial cell to another by means of a phage particle. There are two types of transduction, generalized transduction and specialized transduction. In this chapter two of the best-studied systems – Escherichia coli-phage P1, and Salmonella enterica-phage P22 – are discussed from theoretical and practical perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Margolin P (1987) Generalized transduction. In: Neidhardt F, Ingraham J, Low K, et al. (eds): Escherichia coli and Salmonella Typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  2. Masters M (1985) Generalized transduction. In: Scaife J, Leach D, Galizzi A (eds): Genetics of Bacteria. Academic Press, New York, 197–205

    Google Scholar 

  3. Masters M (1996) Generalized transduction. In: Neidhardt FC (ed): Escherichia coli and Salmonella: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C., 2421–441

    Google Scholar 

  4. Casjens S, Hayden M (1988) Analysis in vivo of the bacteriophage P22 headful nuclease. J Mol Biol 199: 467–74

    Article  CAS  PubMed  Google Scholar 

  5. Tang L, Marion WR, Cingolani G, et al. (2005) Three-dimensional structure of the bacteriophage P22 tail machine. EMBO 24:2087–95

    Article  CAS  Google Scholar 

  6. Susskind MM, Botstein D (1978) Molecular genetics of bacteriophage P22. Microbiol Rev 42: 385–413

    CAS  PubMed  Google Scholar 

  7. Poteete AR (1988) Bacteriophage P22. In: Calender R (ed): The Bacteriophages. Plenum Press, New York, 647–82

    Google Scholar 

  8. Davis R, Botstein D, Roth RJ (1980) Advanced Bacterial Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  9. Casjens S, Sampson L, Randall S, et al. (1992) Molecular genetic analysis of bacteriophage P22 gene 3 product, a protein involved in the initiation of headful DNA packaging. J Mol Biol 227: 1086–99

    Article  CAS  PubMed  Google Scholar 

  10. Schmieger H (1972) Phage P22-mutants with increased or decreased transduction abilities. Mol Gen Genet 119: 75–88

    Article  CAS  PubMed  Google Scholar 

  11. Schmieger H, Backhaus H (1976) Altered cotransduction frequencies exhibited by HT-mutants of Salmonella-phage P22. Mol Gen Genet 143: 307–9

    Article  CAS  PubMed  Google Scholar 

  12. Maloy S, Stewart V, Taylor R (1996) Genetic analysis of pathogenic bacteria. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  13. Neal BL, Brown PK, Reeves PR (1993) Use of Salmonella phage P22 for transduction in Escherichia coli. J Bacteriol 175: 7115–18

    CAS  PubMed  Google Scholar 

  14. Zahrt T, Mora G, Maloy S (1994) Inactivation of mismatch repair overcomes the barrier of transduction between Salmonella typhimurium and Salmonella typhi. J Bacteriol 176:1527–29

    CAS  PubMed  Google Scholar 

  15. Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    CAS  PubMed  Google Scholar 

  16. Lennox ES (1955) Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190–206

    Article  CAS  PubMed  Google Scholar 

  17. Yanofsky C, Lennox ES (1959) Linkage relationship of the genes controlling tryptophan synthesis in Escherichia coli. Virology 8: 425–47

    Article  CAS  PubMed  Google Scholar 

  18. Yarmonlinsky MB, Sternberg N (1988) Bacteriophage P1. In: Calendar R (ed): The Bacteriophages. Plenum Press, New York, 291–438

    Google Scholar 

  19. Sternberg NL, Maurer R (1991) Bacteriophage-mediated generalized transduction in Escherichia coli and Salmonella typhimurium. Methods Enzymol 204: 18–43

    Article  CAS  PubMed  Google Scholar 

  20. Streicher S, Gurney E, Valentine RC (1971) Transduction of the nitrogen-fixation genes in Klebsiella pneumoniae. Proc Natl Acad Sci U S A 68:1174–7

    Article  CAS  PubMed  Google Scholar 

  21. Enomoto M, Stocker BAD (1974) Transduction by phage P1kc in Salmonella typhimurium. Virology 60:503–14

    Article  CAS  PubMed  Google Scholar 

  22. Ornella EP, Stocker BAD (1974) Relation of lipopolysaccharide character to P1 sensitivity in Salmonella typhimurium. Virology 60: 491–502

    Article  Google Scholar 

  23. Shimkets LJ, Gill RE, Kaiser D (1983) Developmental cell interactions in Myxococcus xanthus and the spoC locus. Proc Natl Acad Sci U S A 80:1406–10

    Article  CAS  PubMed  Google Scholar 

  24. Maloy SR, Cronan Jr. JE, Freifelder D (1994) Microbial Genetics, 2nd edn. Jones and Bartlett, Boston, MA

    Google Scholar 

  25. Ebel-Tsipis J, Fox MS, Botstein D (1972) Generalized transduction by phage P22 in Salmonella typhimurium. II. Mechanism of integration of transducing DNA. J Mol Biol 71:449–69

    Article  CAS  PubMed  Google Scholar 

  26. Demerec M, Ozeki H (1959) Tests for alleleism among auxotrophs of Salmonella typhimurium. Genetics 44:269–78

    CAS  PubMed  Google Scholar 

  27. Ozeki H (1959) Chromosome fragments participating in transduction in Salmonella typhimurium. Genetics 44:457–70

    CAS  PubMed  Google Scholar 

  28. Benson NR, Roth J (1997) A Salmonella phage-P22 mutant defective in abortive transduction. Genetics 145:17–27

    CAS  PubMed  Google Scholar 

  29. Wu TT (1966) A model for three-point analysis of random general transduction. Genetics 54:405–10

    CAS  PubMed  Google Scholar 

  30. Garzon A, Cano DA, Casadesus J (1995) Role of Erf recombinase in P22-mediated plasmid transduction. Genetics 140:427–34

    CAS  PubMed  Google Scholar 

  31. Orbach MJ, Jackson EN (1982) Transfer of chimeric plasmids among Salmonella typhimurium strains by P22 transduction. J Bacteriol 149: 985–94

    CAS  PubMed  Google Scholar 

  32. Mann BA, Slauch JM (1997) Transduction of low-copy number plasmids by bacteriophage P22. Genetics 146: 447–56

    CAS  PubMed  Google Scholar 

  33. Zinder ND, Lederberg J (1952) Genetic exchange in Salmonella. J Bacteriol 64: 679–99

    Article  CAS  PubMed  Google Scholar 

  34. Holloway BW (1969) Genetics of Pseudomonas. Bacteriol Rev 33:419–43

    CAS  PubMed  Google Scholar 

  35. Campos JM, Geisselsoder J, Zusman DR (1978) Isolation of bacteriophage Mx4, a generalized transducing phage for Myxococcus xanthus. J Mol Biol 119:167–78

    Article  CAS  PubMed  Google Scholar 

  36. Martin S, Sodergren E, Matsuda T, Kaiser D (1978) Systematic isolation of transducing phages for Myxococcus xanthus. Virology 88:44–53

    Article  CAS  PubMed  Google Scholar 

  37. Maloy S (1989) Experimental Techniques in Bacterial Genetics. Jones and Bartlett, Boston, MA

    Google Scholar 

  38. Bochner B (1984) Curing bacterial cells of lysogenic viruses by using UCB indicator plates. BioTechniques 2:234–40

    CAS  Google Scholar 

  39. Silhavy TJ, Berman ML, Enquist LW, et al. (1984) Experiments with gene fusions. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  40. Kiesel B, Wunsche L (1993) Phage Acm1-mediated transduction in the facultatively methanol- utilizing Acetobacter methanolicus MB 58/4. J Gen Virol 74:1741–5

    Article  CAS  PubMed  Google Scholar 

  41. Herman NJ, Juni E (1974) Isolation and characterization of a generalized transducing bacteriophage for Acinetobacter. J Virol 13: 46–52

    CAS  PubMed  Google Scholar 

  42. Willi K, Sandmeier H, Kulik EM, et al. (1997) Transduction of antibiotic resistance markers among Actinobacillus actinomycetemcomitans strains by temperate bacteriophages Aa phi 23. Cell Mol Life Sci 53:904–10

    Article  CAS  PubMed  Google Scholar 

  43. Thorne CB (1978) Transduction in Bacillus thuringiensis. Appl Environ Microbiol 35:1109–15

    CAS  PubMed  Google Scholar 

  44. Reynolds RB, Reddy A, Thorne CB (1988) Five unique temperate phages from a polylysogenic strain of Bacillus thuringiensis subsp. aizawai. J Gen Microbiol 134:1577–85

    CAS  PubMed  Google Scholar 

  45. Taylor MJ, Goldberg ID (1971) Growth and cultivation of the unusual generalized transducing Bacillus bacteriophage SP-15. Appl Microbiol 22:113–9

    CAS  PubMed  Google Scholar 

  46. Vary PS, Garbe JC, Franzen M, et al. (1982) MP13, a generalized transducing bacteriophage for Bacillus megaterium. J Bacteriol 149:1112–9

    CAS  PubMed  Google Scholar 

  47. Sargent MG, Bennett MF (1985) Amplification of a major membrane-bound DNA sequence of Bacillus subtilis. J Bacteriol 161:589–95

    CAS  PubMed  Google Scholar 

  48. Lovett PS (1972) PBPI: a flagella specific bacteriophage mediating transduction in Bacillus pumilus. Virology 47:743–52

    Article  CAS  PubMed  Google Scholar 

  49. Welker NE (1988) Transduction in Bacillus stearothermophilus. J Bacteriol 170:3761–4

    CAS  PubMed  Google Scholar 

  50. Lepesant-Kejzlarova J, Lepesant JA, Walle J, et al. (1975) Revision of the linkage map of Bacillus subtilis 168: indications for circularity of the chromosome. J Bacteriol 121: 823–34

    CAS  PubMed  Google Scholar 

  51. Lecadet MM, Blondel MO, Ribier J (1980) Generalized transduction in Bacillus thuringiensis var. berliner 1715 using bacteriophage CP-54Ber. J Gen Microbiol 121:203–12

    CAS  PubMed  Google Scholar 

  52. Twarog R, Blouse LE (1968) Isolation and characterization of transducing bacteriophage BP1 for Bacterium anitratum (Achromobacter sp.). J Virol 2:716–22

    CAS  PubMed  Google Scholar 

  53. Shelton CB, Crosslin DR, Casey JL, et al. (2000) Discovery, purification, and characterization of a temperate transducing bacteriophage forBordetella avium. J Bacteriol 182:6130–6

    Article  CAS  PubMed  Google Scholar 

  54. Deb C, Chakraborty R, Ghosh AN, et al. (2003) A generalized transducing thiophage (TPC-1) of a facultative sulfur chemolithotrophic bacterium, Bosea thiooxidans CT5, of alpha-Proteobacteria, isolated from Indian soil. FEMS Microbiol Lett 227:87–92

    Article  CAS  PubMed  Google Scholar 

  55. Bender RA (1981) Improved generalized transducing bacteriophage for Caulobacter crescentus. J Bacteriol 148:734–5

    CAS  PubMed  Google Scholar 

  56. Hirai K, Yanagawa R (1970) Generalized transduction in Corynebacterium renale. J Bacteriol 101:1086–7

    CAS  PubMed  Google Scholar 

  57. Romaniuk LV, Mukvich NS, Kishko, IaG (1985) Characteristics of transduction in Erwinia by phage 59. Mol Gen Mikrobiol Virusol 10:34–9

    PubMed  Google Scholar 

  58. Franza T, Enard C, van Gijsegem F, et al. (1991) Genetic analysis of the Erwinia chrysanthemi 3937 chrysobactin iron-transport system: characterization of a gene cluster involved in uptake and biosynthetic pathways. Mol Microbiol 5:1319–29

    Article  CAS  PubMed  Google Scholar 

  59. Hugouvieux-Cotte-Pattat N, Reverchon S, Robert-Baudouy J (1989) Expanded linkage map of Erwinia chrysanthemi strain 3937. Mol Microbiol 3:573–81

    Article  CAS  PubMed  Google Scholar 

  60. Yoshida Y, Mise K (1984) Characterization of generalized transducing phage phi w39 heteroimmune to phage P1 in Escherichia coli W39. Microbiol Immunol 28:415–26

    CAS  PubMed  Google Scholar 

  61. Young KK, Edlin G (1983) Physical and genetical analysis of bacteriophage T4 generalized transduction. Mol Gen Genet 192:241–6

    Article  CAS  PubMed  Google Scholar 

  62. Mise K, Suzuki K (1970) New generalized transducing bacteriophage in Echerichia coli. J Virol. 6:253–5

    CAS  PubMed  Google Scholar 

  63. Hodgson DA (2000) Generalized transduction of serotype 1/2 and serotype 4b strains of Listeria monocytogenes. Mol Microbiol 35: 312–23

    Article  CAS  PubMed  Google Scholar 

  64. Meile L, Abendschein P, Leisinger T (1990) Transduction in the archaebacterium Methano- bacterium thermoautotrophicum Marburg. J Bacteriol 172:3507–8

    CAS  PubMed  Google Scholar 

  65. Lee S, Kriakov J, Vilcheze C, et al. (2004) Bxz1, a new generalized transducing phage for mycobacteria. FEMS Microbiol Lett 241:271–6

    Article  CAS  PubMed  Google Scholar 

  66. Campos JM, Geisselsoder J, Zusman DR (1978) Isolation of bacteriophage Mx4, a generalized transducing phage for Myxococcus xanthus. J Mol Biol 119:167–78

    Article  CAS  PubMed  Google Scholar 

  67. Geisselsoder J, Campos JM, Zusman DR (1978) Physical characterization of bacteriophage Mx4, a generalized transducing phage for Myxococcus xanthus. J Mol Biol 119: 179–89

    Article  CAS  PubMed  Google Scholar 

  68. Tojo N, Sanmiya K, Sugawara H, et al. (1996) Integration of bacteriophage Mx8 into the Myxococcus xanthus chromosome causes a structural alteration at the C-terminal region of the IntP protein. J Bacteriol 178: 4004–11

    CAS  PubMed  Google Scholar 

  69. Avery L, Kaiser D (1983) In situ transposon replacement and isolation of a spontaneous tandem genetic duplication. Mol Gen Genet 191:99–109

    Article  CAS  PubMed  Google Scholar 

  70. Nakamura M, Horiuchi S, Nakaya R (1975) Comparative studies on generalized transducing bacteriophages of Proteus mirabilis, phim and pi1. Jpn J Microbiol 19:123–31

    CAS  PubMed  Google Scholar 

  71. Coetzee JN (1975) Transduction of a Proteus vulgaris strain by a Proteus mirabilis bacteriophage. J Gen Microbiol 89:299–309

    CAS  PubMed  Google Scholar 

  72. Kilbane JJ, Miller RV (1988) Molecular characterization of Pseudomonas aeruginosa bacteriophages: identification and characterization of the novel virus B86. Virology 164:193–200

    Article  CAS  PubMed  Google Scholar 

  73. Ripp S, Ogunseitan OA, Miller RV (1994) Transduction of a freshwater microbial community by a new Pseudomonas aeruginosa generalized transducing phage, UT1. Mol Ecol 3: 121–6

    Article  CAS  PubMed  Google Scholar 

  74. Byrne M, Kropinski AM (2005) The genome of the Pseudomonas aeruginosa generalized transducing bacteriophage F116. Gene 346:187–94

    Article  CAS  PubMed  Google Scholar 

  75. Caruso M, Shapiro JA (1982) Interactions of Tn7 and temperate phage F116L of Pseudomonas aeruginosa. Mol Gen Genet 188: 292–8

    Article  CAS  PubMed  Google Scholar 

  76. Morrison WD, Miller RV, Sayler GS (1978) Frequency of F116-mediated transduction of Pseudomonas aeruginosa in a freshwater environment. Appl Environ Microbiol 36: 724–30

    CAS  PubMed  Google Scholar 

  77. Budzik JM, Rosche WA, Rietsch A, O’Toole GA (2004) Isolation and characterization of a generalized transducing phage for Pseudomonas aeruginosa strains PAO1 and PA14. J Bacteriol 186:3270–3

    Article  CAS  PubMed  Google Scholar 

  78. Holloway BW, Krishnapillai V, Morgan AF (1979) Chromosomal genetics of Pseudomonas. Microbiol Rev 43:73–102

    CAS  PubMed  Google Scholar 

  79. Chakrabarty AM, Gunsalus IC (1970) Transduction and genetic homology between Pseudomonas speciesputida and aeruginosa. J Bacteriol 103:830–2

    PubMed  Google Scholar 

  80. Matsumoto H, Itoh Y, Ohta S, et al. (1986) A generalized transducing phage of Pseudomonas cepacia. J Gen Microbiol 132: 2583–6

    CAS  PubMed  Google Scholar 

  81. Morgan AF, Dean HF (1985) Chromosomal map of Pseudomonas putida PPN, and a comparison of gene order with the Pseudomonas aeruginosa PAO chromosomal map. J Gen Microbiol 131:885–96

    CAS  PubMed  Google Scholar 

  82. Sik T, Horvath J, Chatterjee S (1980) Generalized transduction in Rhizobium meliloti. Mol Gen Genet 178:511–6

    Article  CAS  PubMed  Google Scholar 

  83. Sander M, Schmieger H (2001) Method for host-independent detection of generalized transducing bacteriophages in natural habitats. Appl Environ Microbiol 67:1490–3

    Article  CAS  PubMed  Google Scholar 

  84. Schicklmaier P, Schmieger H (1995) Frequency of generalized transducing phages in natural isolates of the Salmonella typhimurium complex. Appl Environ Microbiol 61: 1637–40

    CAS  PubMed  Google Scholar 

  85. Llagostera M, Barbe J, Guerrero R (1986) Characterization of SE1, a new general transducing phage of Salmonella typhimurium. J Gen Microbiol 132:1035–41

    CAS  PubMed  Google Scholar 

  86. Mise K, Kawai M, Yoshida Y, et al. (1981) Characterization of bacteriophage j2 of Salmonella typhi as a generalized transducing phage closely related to coliphage P1. J Gen Microbiol 126:321–6

    CAS  PubMed  Google Scholar 

  87. Mise K, Yoshida Y, Kawai M (1983) Generalized transduction between Salmonella typhi and Salmonella typhimurium by phage j2 and characterization of the j2 plasmid in Escherichia coli. J Gen Microbiol 129: 3395–400

    CAS  PubMed  Google Scholar 

  88. Humphrey SB, Stanton TB, Jensen NS, et al. (1997) Purification and characterization of VSH-1, a generalized transducing bacteriophage of Serpulina hyodysenteriae. J Bacteriol 179:323–9

    CAS  PubMed  Google Scholar 

  89. Regue M, Fabregat C, Vinas M (1991) A generalized transducing bacteriophage for Serratia marcescens. Res Microbiol 142: 23–7

    Article  CAS  PubMed  Google Scholar 

  90. Matsumoto H, Tazaki T, Hosogaya S (1973) A generalized transducing phage of Serratia marcescens. Jpn J Microbiol 17:473–9

    CAS  PubMed  Google Scholar 

  91. Financsek I, Ketyi I (1976) Generalized transduction of Shigella flexneri by converting phage PE5. Acta Microbiol Acad Sci Hung 23:317–24

    CAS  PubMed  Google Scholar 

  92. Schroeder CJ, Pattee PA (1984) Transduction analysis of transposon Tn551 insertions in the trp-thy region of the Staphylococcus aureus chromosome. J Bacteriol 157: 533–7

    CAS  PubMed  Google Scholar 

  93. Novick RP, Edelman I, Lofdahl S (1986) Small Staphylococcus aureus plasmids are transduced as linear multimers that are formed and resolved by replicative processes. J Mol Biol 192:209–20

    Article  CAS  PubMed  Google Scholar 

  94. Bachi B (1980) Physical mapping of the BglI, BglII, PstI and EcoRI restriction fragments of staphylococcal phage phi 11 DNA. Mol Gen Genet 180:391–8

    Article  CAS  PubMed  Google Scholar 

  95. Totolian AA, Boitsov AS, Kol’ K, et al. (1981) Comparative characters of the transducing virulent streptococcal phages A25 and CA1 Mol Biol (Mosk) 15:894–900

    CAS  Google Scholar 

  96. Wannamaker LW, Almquist S, Skjold S (1973) Intergroup phage reactions and transduction between group C and group A streptococci. J Exp Med 137:1338–53

    Article  CAS  PubMed  Google Scholar 

  97. Colon AE, Cole RM, Leonard CG (1972) Intergroup lysis and transduction by streptococcal bacteriophages. J Virol 9:551–3

    CAS  PubMed  Google Scholar 

  98. Mercenier A, Slos P, Faelen M, Lecocq JP (1988) Plasmid transduction in Streptococcus thermophilus. Mol Gen Genet 212: 386–9

    Article  CAS  PubMed  Google Scholar 

  99. Burke J, Schneider D, Westpheling J (2001) Generalized transduction in Streptomyces coelicolor. Proc Natl Acad Sci U S A 98: 6289–94

    Article  CAS  PubMed  Google Scholar 

  100. Suss F, Klaus S (1981) Transduction in Streptomyces hygroscopicus mediated by the temperate bacteriophage SH10. Mol Gen Genet 181:552–5

    Article  CAS  PubMed  Google Scholar 

  101. Stuttard C (1983) Localized hydroxylamine mutagenesis, and cotransduction of threonine and lysine genes, in Streptomyces venezuelae. J Bacteriol 155:1219–23

    CAS  PubMed  Google Scholar 

  102. Stuttard C, Atkinson L, Vats S (1987) Genome structure in Streptomyces spp.: adjacent genes on the S. coelicolor A3(2) linkage map have cotransducible analogs in S. venezuelae. J Bacteriol 169:3814–6

    CAS  PubMed  Google Scholar 

  103. Muramatsu K, Matsumoto H (1991) Two generalized transducing phages in Vibrio parahaemolyticus and Vibrio alginolyticus. Microbiol Immunol 35:1073–84

    CAS  PubMed  Google Scholar 

  104. Hava DL, Camilli A (2001) Isolation and characterization of a temperature-sensitive generalized transducing bacteriophage for Vibrio cholerae. J Microbiol Methods 46:217–25

    Article  CAS  PubMed  Google Scholar 

  105. Ichige A, Matsutani S, Oishi K, et al. (1989) Establishment of gene transfer systems for and construction of the genetic map of a marine Vibrio strain. J Bacteriol 171:1825–34

    CAS  PubMed  Google Scholar 

  106. Weiss BD, Capage MA, Kessel M, et al. (1994) Isolation and characterization of a generalized transducing phage for Xanthomonas campestris pv. campestris. J Bacteriol 176:3354–9

    CAS  PubMed  Google Scholar 

  107. Murooka Y, Harada T (1979) Expansion of the host range of coliphage P1 and gene transfer from enteric bacteria to other Gram-negative bacteria. Appl Environ Microbiol 38:754–7

    CAS  PubMed  Google Scholar 

  108. Kaiser D, Dworkin M (1975) Gene transfer to myxobacterium by Escherichia coli phage P1. Science 187:653–4

    Article  CAS  PubMed  Google Scholar 

  109. O’Connor KA, Zusman DR (1983) Coliphage P1-mediated transduction of cloned DNA from Escherichia coli to Myxococcus xanthus: use for complementation and recombinational analyses. J Bacteriol 155:317–29

    PubMed  Google Scholar 

  110. Amati P (1962) Abortive infection of Pseudomonas aeruginosa and Serratia marcescens with coliphage P1. J Bacteriol 83:433–4

    CAS  PubMed  Google Scholar 

  111. Lawton WD, Molnar DM (1972) Lysogenic conversion of Pasteurella by Escherichia coli bacteriophage P1Cm. J Virol 9:708–9

    CAS  PubMed  Google Scholar 

  112. McHenney MA, Baltz RH (1988) Transduction of plasmid DNA in Streptomyces spp. and related genera by bacteriophage FP43. J Bacteriol 170:2276–82

    CAS  PubMed  Google Scholar 

  113. Harkki A, Hirst TR, Holmgrn J, Palva ET (1986) Expression of the Escherichia coli lamB gene in Vibrio cholerae. Microb Pathog 1:283–8

    Article  CAS  PubMed  Google Scholar 

  114. Jasiecki J, Czy A, Gabig M, Wegrzyn G (2001) Construction and use of a broad-host range plasmid expressing the lamB gene for utilization of bacteriophage lambda vectors in the marine bacterium Vibrio harveyi. Mar Biotechnol (NY) 3:336–45

    Article  CAS  Google Scholar 

  115. Marrero R, Young FE, Yasbin RE (1984) Characterization of interspecific plasmid transfer mediated by Bacillus subtilis temperate bacteriophage SP02. J Bacteriol 160:458–61.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thierauf, A., Perez, G., Maloy, a.S. (2009). Generalized Transduction. In: Clokie, M.R., Kropinski, A.M. (eds) Bacteriophages. Methods in Molecular Biology™, vol 501. Humana Press. https://doi.org/10.1007/978-1-60327-164-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-164-6_23

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-682-5

  • Online ISBN: 978-1-60327-164-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics