Skip to main content

Optimizing the Cell Culture Microenvironment

  • Protocol
  • First Online:
Mouse Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1940))

Abstract

The survival, proliferation, and differentiation of cells in culture are determined not only by their intrinsic potential but also by cues provided by the permissive or restrictive microenvironment in which they reside. The robustness and reproducibility of cell culture assays and endpoints relies on the stability of that microenvironment and vigilant attention to the control of variables that affect cell behavior during culture. These often underappreciated variables include, but are not limited to, medium pH and buffering, osmolarity, composition of the gas phase, the timing and periodicity of refeeding and subculture, and the impact of fluctuations in temperature and gas phase composition on frequent opening and closing of incubator doors. This chapter briefly describes the impact of these and other variables on the behavior of cultured cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    CAS  PubMed  Google Scholar 

  2. Wagers AJ (2012) The stem cell niche in regenerative medicine. Cell Stem Cell 10:362–369

    Article  CAS  Google Scholar 

  3. Muncie JM, Weaver VM (2018) The physical and biochemical properties of the extracellular matrix regulate cell fate. Curr Top Dev Biol 130:1–37

    Article  Google Scholar 

  4. Nelson CM, Bissell MJ (2006) Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22:287–309

    Article  CAS  Google Scholar 

  5. Xu R, Boudreau A, Bissell MJ (2009) Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev 28:167–176

    Article  Google Scholar 

  6. Sneddon JB, Werb Z (2007) Location, location, location: the cancer stem cell niche. Cell Stem Cell 1:607–611

    Article  CAS  Google Scholar 

  7. Quesenberry PJ (1993) Too much of a good thing. Reductionism run amok [editorial]. Exp Hematol 21:193–194

    CAS  PubMed  Google Scholar 

  8. Folkman J, Greenspan HP (1975) Influence of geometry on control of cell growth. Biochim Biophys Acta 417:211–236

    CAS  PubMed  Google Scholar 

  9. Kaushik G, Ponnusamy MP, Batra SK (2018) Concise review: current status of three-dimensional organoids as preclinical models. Stem Cells 36:1329–1340

    Article  Google Scholar 

  10. Tharp KM, Weaver VM (2018) Modeling tissue polarity in context. J Mol Biol 430:3613–3628

    Article  CAS  Google Scholar 

  11. Yao T, Asayama Y (2017) Animal-cell culture media: history, characteristics, and current issues. Reprod Med Biol 16:99–117

    Article  Google Scholar 

  12. Ham RG (1981) Survival and growth requirements of nontransformed cells. In: Baserga R (ed) Handbook of experimental pharmacology, Tissue growth factors, vol 57. Springer-Verlag, Berlin, pp 13–88

    Google Scholar 

  13. Ham RG (1984) Formulation of basal nutrient media. In: Barnes DW, Sirbascu DA, Sato GH (eds) Methods for preparation of media, supplements, and substrata for serum-free animal cell culture, Cell culture methods for molecular and cell biology. Alan R. Liss, New York, pp 1–21

    Google Scholar 

  14. Hughes CS, Postovit LM, Lajoie GA (2010) Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10:1886–1890

    Article  CAS  Google Scholar 

  15. Csaszar E, Kirouac DC, Yu M, Wang W, Qiao W et al (2012) Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling. Cell Stem Cell 10:218–229

    Article  CAS  Google Scholar 

  16. Ceccarini C, Eagle H (1971) pH as a determinant of cellular growth and contact inhibition. Proc Natl Acad Sci U S A 68:229–233

    Article  CAS  Google Scholar 

  17. Eagle H (1974) Some effects of environmental pH on cellular metabolism and function. In: Clarkson B, Baserga R (eds) Control of proliferation in animal cells, vol 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 1–12

    Google Scholar 

  18. McAdams TA, Miller WM, Papoutsakis ET (1997) Variations in culture pH affect the cloning efficiency and differentiation of progenitor cells in ex vivo haemopoiesis. Br J Haematol 97:889–895

    Article  CAS  Google Scholar 

  19. Waymouth C (1974) “Feeding the baby” – designing the culture milieu to enhance cell stability. J Natl Cancer Inst 53:1443–1448

    Article  CAS  Google Scholar 

  20. Francis GL (2010) Albumin and mammalian cell culture: implications for biotechnology applications. Cytotechnology 62:1–16

    Article  CAS  Google Scholar 

  21. Brodsky AN, Zhang J, Visconti RP, Harcum SW (2013) Expansion of mesenchymal stem cells under atmospheric carbon dioxide. Biotechnol Prog 29:1298–1306

    Article  CAS  Google Scholar 

  22. Liu W, Ren Z, Lu K, Song C, Cheung ECW et al (2018) The suppression of medium acidosis improves the maintenance and differentiation of human pluripotent stem cells at high density in defined cell culture medium. Int J Biol Sci 14:485–496

    Article  CAS  Google Scholar 

  23. Jacobs K, Zambelli F, Mertzanidou A, Smolders I, Geens M et al (2016) Higher-density culture in human embryonic stem cells results in DNA damage and genome instability. Stem Cell Reports 6:330–341

    Article  CAS  Google Scholar 

  24. Freshney RI (2016) Defined media and supplements. In: Culture of animal cells: a manual of basic technique and specialized applications, 7th edn. John Wiley & Sons Inc., Hoboken, pp 125–148

    Google Scholar 

  25. Toussaint O, Weemaels G, Debacq-Chainiaux F, Scharffetter-Kochanek K, Wlaschek M (2011) Artefactual effects of oxygen on cell culture models of cellular senescence and stem cell biology. J Cell Physiol 226:315–321

    Article  CAS  Google Scholar 

  26. Wion D, Christen T, Barbier EL, Coles JA (2009) PO(2) matters in stem cell culture. Cell Stem Cell 5:242–243

    Article  CAS  Google Scholar 

  27. Halliwell B (2003) Oxidative stress in cell culture: an under-appreciated problem? FEBS Lett 540:3–6

    Article  CAS  Google Scholar 

  28. Halliwell B (2014) Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed J 37:99–105

    PubMed  Google Scholar 

  29. Ito K, Ito K (2018) Hematopoietic stem cell fate through metabolic control. Exp Hematol 64:1–11

    Article  CAS  Google Scholar 

  30. Parshad R, Sanford KK, Jones GM, Price FM, Taylor WG (1977) Oxygen and light effects on chromosomal aberrations in mouse cells in vitro. Exp Cell Res 104:199–205

    Article  CAS  Google Scholar 

  31. Mantel CR, O’Leary HA, Chitteti BR, Huang X, Cooper S et al (2015) Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 161:1553–1565

    Article  CAS  Google Scholar 

  32. Waymouth C (1970) Osmolality of mammalian blood and of media for culture of mammalian cells. In Vitro 6:109–127

    Article  CAS  Google Scholar 

  33. Allen CB, Schneider BK, White CW (2001) Limitations to oxygen diffusion and equilibration in in vitro cell exposure systems in hyperoxia and hypoxia. Am J Physiol Lung Cell Mol Physiol 281:L1021–L1027

    Article  CAS  Google Scholar 

  34. Place TL, Domann FE, Case AJ (2017) Limitations of oxygen delivery to cells in culture: an underappreciated problem in basic and translational research. Free Radic Biol Med 113:311–322

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Bertoncello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bertoncello, I. (2019). Optimizing the Cell Culture Microenvironment. In: Bertoncello, I. (eds) Mouse Cell Culture. Methods in Molecular Biology, vol 1940. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9086-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9086-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9085-6

  • Online ISBN: 978-1-4939-9086-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics