Skip to main content

Fragile X Syndrome Pre-Clinical Research: Comparing Mouse- and Human-Based Models

  • Protocol
  • First Online:
Fragile-X Syndrome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1942))

Abstract

Despite almost 30 years of biomedical research, a treatment or cure for fragile X syndrome (FXS) is not yet available. The reasons behind this are varied, and among them are discrepancies in both research methodologies and research models. For many years, the fmr1 knockout mouse model dominated the field, and was used to draw important conclusions. The establishment of FXS-human cellular models called these conclusions into question, showing conflicting evidence. Discrepancies in FXS research, between mouse and human, might arise from differences inherent to each species, and from the use of different methodologies. This chapter summarizes these discrepancies and evaluates their impact on the current status of clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verkerk AJ et al (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65(5):905–914

    Article  CAS  Google Scholar 

  2. Hinds HL et al (1993) Tissue specific expression of FMR-1 provides evidence for a functional role in fragile X syndrome. Nat Genet 3(1):36–43

    Article  CAS  Google Scholar 

  3. Abitbol M et al (1993) Nucleus basalis magnocellularis and hippocampus are the major sites of FMR-1 expression in the human fetal brain. Nat Genet 4(2):147–153

    Article  CAS  Google Scholar 

  4. (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X consortium. Cell 78(1):23–33

    Google Scholar 

  5. Castren M et al (2005) Altered differentiation of neural stem cells in fragile X syndrome. Proc Natl Acad Sci U S A 102(49):17834–17839

    Article  CAS  Google Scholar 

  6. Eiges R et al (2007) Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1(5):568–577

    Article  CAS  Google Scholar 

  7. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  Google Scholar 

  8. Urbach A et al (2010) Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6(5):407–411

    Article  CAS  Google Scholar 

  9. Sheridan SD et al (2011) Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS One 6(10):e26203

    Article  CAS  Google Scholar 

  10. Lancaster MA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379

    Article  CAS  Google Scholar 

  11. Braat S, Kooy RF (2014) Fragile X syndrome neurobiology translates into rational therapy. Drug Discov Today 19(4):510–519

    Article  Google Scholar 

  12. Santos AR, Kanellopoulos AK, Bagni C (2014) Learning and behavioral deficits associated with the absence of the fragile X mental retardation protein: what a fly and mouse model can teach us. Learn Mem 21(10):543–555

    Article  CAS  Google Scholar 

  13. Telias M, Ben-Yosef D (2014) Modeling neurodevelopmental disorders using human pluripotent stem cells. Stem Cell Rev 10(4):494–511

    Article  CAS  Google Scholar 

  14. Ascano M Jr et al (2012) FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492(7429):382–386

    Article  CAS  Google Scholar 

  15. Brennan TJ et al (1997) Sound-induced seizures in serotonin 5-HT2c receptor mutant mice. Nat Genet 16(4):387–390

    Article  CAS  Google Scholar 

  16. Huber KM et al (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 99(11):7746–7750

    Article  CAS  Google Scholar 

  17. Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27(7):370–377

    Article  CAS  Google Scholar 

  18. Deng PY et al (2013) FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels. Neuron 77(4):696–711

    Article  CAS  Google Scholar 

  19. Lohith TG et al (2013) Is metabotropic glutamate receptor 5 upregulated in prefrontal cortex in fragile X syndrome? Mol Autism 4(1):15

    Article  CAS  Google Scholar 

  20. Telias M et al (2015) Functional deficiencies in fragile X neurons derived from human embryonic stem cells. J Neurosci 35(46):15295–15306

    Article  CAS  Google Scholar 

  21. Min WW et al (2009) Elevated glycogen synthase kinase-3 activity in Fragile X mice: key metabolic regulator with evidence for treatment potential. Neuropharmacology 56(2):463–472

    Article  CAS  Google Scholar 

  22. Guo W et al (2012) Inhibition of GSK3beta improves hippocampus-dependent learning and rescues neurogenesis in a mouse model of fragile X syndrome. Hum Mol Genet 21(3):681–691

    Article  CAS  Google Scholar 

  23. Telias M et al (2015) Molecular mechanisms regulating impaired neurogenesis of fragile X syndrome human embryonic stem cells. Stem Cells Dev 24(20):2353–2365

    Article  CAS  Google Scholar 

  24. Braat S, Kooy RF (2015) Insights into GABAAergic system deficits in fragile X syndrome lead to clinical trials. Neuropharmacology 88:48–54

    Article  CAS  Google Scholar 

  25. He Q et al (2014) The developmental switch in GABA polarity is delayed in fragile X mice. J Neurosci 34(2):446–450

    Article  CAS  Google Scholar 

  26. D'Hulst C et al (2009) Expression of the GABAergic system in animal models for fragile X syndrome and fragile X associated tremor/ataxia syndrome (FXTAS). Brain Res 1253:176–183

    Article  CAS  Google Scholar 

  27. Telias M, Segal M, Ben-Yosef D (2016) Immature responses to GABA in fragile X neurons derived from human embryonic stem cells. Front Cell Neurosci 10:121

    Article  Google Scholar 

  28. Telias M, Ben-Yosef D (2015) Neural stem cell replacement: a possible therapy for neurodevelopmental disorders? Neural Regen Res 10(2):180–182

    Article  Google Scholar 

  29. Xie N et al (2016) Reactivation of FMR1 by CRISPR/Cas9-mediated deletion of the expanded CGG-repeat of the fragile X chromosome. PLoS One 11(10):e0165499

    Article  Google Scholar 

  30. Park CY et al (2015) Reversion of FMR1 methylation and silencing by editing the triplet repeats in fragile X iPSC-derived neurons. Cell Rep 13(2):234–241

    Article  CAS  Google Scholar 

  31. Liu XS et al (2018) Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172(5):979–992 e6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Telias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Telias, M. (2019). Fragile X Syndrome Pre-Clinical Research: Comparing Mouse- and Human-Based Models. In: Ben-Yosef, D., Mayshar, Y. (eds) Fragile-X Syndrome. Methods in Molecular Biology, vol 1942. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9080-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9080-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9079-5

  • Online ISBN: 978-1-4939-9080-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics